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Supplementary Material for “DEs-Inspired Accelerated Unfolded
Linearized ADMM Networks for Inverse Problems”

There are some detailed explanations for the main paper. Firstly, we give the proofs of Lemma 2 and Theorem 1 in Section A.
Secondly, the convergence analysis of the explicit Trapezoid LADMM scheme is given in Section B. Finally, we provide more
experimental details and results in Section C.

A. DES FORM AND ERROR ANALYSIS

I. Proof of Lemma 2

Proof. Our implicit Trapezoid LADMM scheme (15) can be rewritten as the following minimizing problems:
xk+1 = argmin

x

{
f(x) +

θk
2h

∥∥x− xk +
hβk

2θk

(
Fk(xk) + Fk(xk+1)

)∥∥2},
yk+1 = argmin

y

{
g(y) +

ηk
2h

∥∥y − yk +
h

2ηk

(
Gk(yk) +Gk(yk+1)

)∥∥2},
λk+1 = λk + hβk(Axk+1 + yk+1 − b).

(A.1)

In the similar way, we can have the first-order optimality conditions of (A.1):
0 ∈ ∂f(xk+1) +

θk
h

(
xk+1 − xk +

hβk

2θk

(
Fk(xk) + Fk(xk+1)

))
,

0 ∈ ∂g(yk+1) +
ηk
h

(
yk+1 − yk +

h

2ηk

(
Gk(yk) +Gk(yk+1)

))
,

0 = λk+1 − λk − hβk(Axk+1 + yk+1 − b).

(A.2)

From the first inclusion, we obtain

0 ∈ ∂f(xk+1) + θk
xk+1 − xk

h
+

1

2

(
W⊤

k (λk + βk(Axk + yk − b)) +W⊤
k (λk + βk(Axk+1 + yk − b))

)
. (A.3)

We also see that limh→0
xk+1−xk

h = Ẋ(t), xk+1 = X(t + h)
h→0−−−→ X(t), yk+1 = Y(t + h)

h→0−−−→ Y(t), and λk+1 =

Λ(t+ h)
h→0−−−→ Λ(t). Then,

(A.3) h→0−−−→ 0 ∈ ∂f(X(t)) + θẊ(t)− F (X(t)). (A.4)

And 0 ∈ ∂g(Y(t))+ηẎ(t)−G(Y(t)) can be obtained in the same way. Finally, about λ, we can also obtain Λ̇(t)−β(AX(t)+
Y(t)−b) = 0. We consider the Moreau-Yosida approximations fµ1(x) and gµ2(y) of objective f(x) and g(y) with µ1, µ2 > 0.
Then the implicit Trapezoid LADMM scheme (15) also corresponds to solving the approximating DEs (8). In this case, the
accuracy or error of the two schemes can be compared. Conversely, if our Euler LADMM scheme and Trapezoid LADMM
scheme do not correspond to solving the same DEs, then the Trapezoid LADMM scheme may not generate an unfolded network
with faster convergence despite its higher precision.

II. Proof of Theorem 1

Proof. In this subsection, we give the local and global error bound analysis of our Euler LADMM scheme (7) and Trapezoid
LADMM scheme (15), and our analysis refers to [1]. We first review the following notations.

1. Xk+1 = (x⊤
k+1,y

⊤
k+1,λ

⊤
k+1)

⊤ is an iterative solution;
2. The optimal trajectory function is X (t) = (X(t)⊤,Y(t)⊤,Λ(t)⊤)⊤ and initial value X (0) = (x⊤

0 ,y
⊤
0 ,λ

⊤
0 )

⊤;
3. Let P(t,Θ,X ) = ( 1θ (F (X) −∇f(X))⊤, 1

η (G(Y) −∇g(Y))⊤, β(AX + Y − b)⊤)⊤, omitting t, and Θ = (W, θ, η, β).
Under the assumptions mentioned in Theorem 1 and these definitions, we can obatin a differential equation w.r.t. X , i.e.,
Ẋ = P(t,Θ,X ), with the initial condition X (0) = X0.

Besides, the optimal value at tk is defined as X (tk), tk ∈ [0, T ]. The global error bound from optimal trajec-
tory is defined as εk+1 = X (tk+1) − Xk+1; the local error bound from optimal trajectory is defined as ek+1 =
X (tk+1) − X ∗

k+1, where X ∗
k+1 = K

(
X (tk) + hP(tk,X (tk))

)
for the Euler LADMM scheme (7) and X ∗

k+1 = K
(
X (tk) +

h
2 [P(tk,Θk,X (tk)) +P(tk+1,Θk,X (tk+1))]

)
for the Trapezoid LADMM scheme (15), non-linear transformation K(·) =

(Ff (·);Gg(·); I(·)), and ∥ · ∥ represents the vector ℓ2-norm.
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The Error Bound of Our Euler LADMM scheme: We start from Euler LADMM scheme (7) and consider local error as
follows:

∥ek+1∥ = ∥X (tk+1)−X ∗
k+1∥

= ∥K
(
X (tk) +

∫ tk+1

tk

P(t,Θ,X (t))dt
)
−K

(
X (tk) + hP(tk,Θk,X (tk))

)
∥

(b)

≤ ∥X (tk) +

∫ tk+1

tk

P(t,Θ,X (t))dt− [X (tk) + hP(tk,Θk,X (tk))]∥

= ∥
∫ tk+1

tk

P(t,Θ,X (t))dt− hP(tk,Θk,X (tk))∥

(A.5)

where
(b)

≤ holds because Ff (·) and Gg(·) are non-expansive mappings, and the rest of the equation holds due to [1, Theorem
12.2]. Moreover, let us estimate the local error bound:

∥ek+1∥ = ∥
∫ tk+1

tk

[
Ẋ (t)− Ẋ (tk)

]
dt∥ = ∥

∫ tk+1

tk

Ẍ (tk + ξ(t− tk))(t− tk)dt∥ = ∥1
2
h2Ẍ (tk + ξ(t̄− tk))∥ (A.6)

where 0 < ξ < 1, t̄ ∈ (tk, tk+1), and the second equation holds due to the Mean Value Theorem, and the rest of the equation
holds due to [1, Theorem 12.2]. Set Q1 = maxt0≤t≤T ∥Ẍ (t)∥, then ∥ek+1∥ ≤ 1

2Q1h
2, that is, the local error bound is O(h2).

Next, the global error bound of the Euler LADMM scheme (7) is:

∥εk+1∥ = ∥X (tk+1)−Xk+1∥

≤ ∥εk +

∫ tk+1

tk

P(t,Θ,X (t))dt−
∫ tk+1

tk

P(tk,Θk,X (tk))dt+

∫ tk+1

tk

P(tk,Θk,X (tk))dt−
∫ tk+1

tk

P(tk,Θk,Xk)dt∥

= ∥εk + ek+1 +

∫ tk+1

tk

[P(tk,Θk,X (tk))−P(tk,Θk,Xk)] dt∥

≤ ∥εk∥+
1

2
Q1h

2 +

∫ tk+1

tk

∥P(tk,Θk,X (tk))−P(tk,Θk,Xk)∥ dt
(A.7)

where the first inequality holds due to non-expansive mappings Ff (·) and Gg(·) and [1, Theorem 12.2].
The functions f and g are Lf -smooth and Lg-smooth respectively, so ∥∇f(x1)−∇f(x2)∥ ≤ Lf∥x1 − x2∥ and ∥∇g(y1)−

∇g(y2)∥ ≤ Lg∥y1−y2∥. In such case, we can omit µ1 and µ2 and just use the gradients of the functions f and g. In addition, Fk

and Gk are Lipschitz-continuous with respect to x and y, respectively, and thus P(·) with respect to X (t) satisfies the Lipschitz
continuous condition, i.e., there is a constant L1 > max{Lf , Lg} such that ∥P(t,Θ,X1)−P(t,Θ,X2)∥ ≤ L1∥X1 −X2∥.

Especially, when f or g is ℓ1-norm, from our analysis in the main paper, there exists a constant Lfµ1
such that ∥∇fµ1(x1)−

∇fµ1(x2)∥ ≤ Lfµ1
∥x1 − x2∥ as well as g. Thus there is always a constant L2 such that P(·) satisfies ∥P(t,Θ,X1) −

P(t,Θ,X2)∥ ≤ L2∥X1 − X2∥ at discontinuous points, then ∥P(t,Θ,X1) − P(t,Θ,X2)∥ ≤ L∥X1 − X2∥ holds, where
L = max{L1, L2}. In practice, our experiments also verify that our networks work on ℓ1-norm problem models. Plugging this
Lipschitz continuous condition into (A.7) yields that:

∥εk+1∥ ≤ (1 + hL) ∥εk∥+
1

2
Q1h

2

= (1 + hL)2 ∥εk−1∥+ (1 + hL)
1

2
Q1h

2 +
1

2
Q1h

2

≤ · · ·

≤ (1 + hL)k+1 ∥ε0∥+
[
(1 + hL)k + (1 + hL)k−1 + · · ·+ 1

] 1
2
Q1h

2.

(A.8)

More generally,

∥εk∥ ≤ (1 + hL)k ∥ε0∥+
[ k∑
j=0

(1 + hL)j
]1
2
Q1h

2 ≤ (1 + hL)k ∥ε0∥+
Q1h

2

2hL

[
(1 + hL)k − 1

]
, (k = 1, 2, · · · ) . (A.9)

Due to hL > 0, then ehL > 1 + hL, ekhL > (1 + hL)k, the global error bound of the Euler LADMM scheme (7) from the
optimal trajectory is:

∥εk∥ ≤ ekhL ∥ε0∥+
Q1h

2

2hL

[
ekhL − 1

]
∥εk∥ ≤ e(T−t0)L ∥ε0∥+

Q1h
2

2hL

[
e(T−t0)L − 1

]
≜ O(h). (A.10)
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The Error Bound of Our Implicit Trapezoid LADMM Scheme: About implicit Trapezoid LADMM scheme (15), we
consider its local error bound analysis.

∥ek+1∥ = ∥X (tk+1)−X ∗
k+1∥

= ∥K
(
X (tk) +

∫ tk+1

tk

P(t,Θ,X (t))dt
)
−K

(
X (tk) +

h

2
[P(tk,Θk,X (tk)) +P(tk+1,Θk,X (tk+1))]

)
∥

(b)

≤ ∥X (tk) +

∫ tk+1

tk

P(t,Θ,X (t))dt−X (tk)−
h

2
[P(tk,Θk,X (tk)) +P(tk+1,Θk,X (tk+1))] ∥

= ∥
∫ tk+1

tk

{
P(t,Θ,X (t))−

[
t− tk+1

tk − tk+1
P(tk,Θk,X (tk)) +

t− tk
tk+1 − tk

P(tk+1,Θk,X (tk+1))

]}
dt∥

= ∥
∫ tk+1

tk

[P(t,Θ,X (t))− P1(t)] dt∥

(A.11)

where
(b)

≤ holds because Ff (·) and Gg(·) are non-expansive mappings and so does K(·), P1 is the two-point interpolation
polynomial of P(t,Θ,X (t)), and the other equations hold due to the same reason as in [1]. From the remainder term of
interpolation, we obtain

∥ek+1∥ = ∥
∫ tk+1

tk

1

2!
P̈(tk + ξh)(t− tk)(t− tk+1)dt∥

= ∥P̈(tk + ξh)

∫ tk+1

tk

1

2!
(t− tk)(t− tk+1)dt∥

= ∥ − h3

12
P̈(tk + ξh)∥ = ∥ − h3

12
X (3)(tk + ξh)∥ ≤ 1

12
Q2h

3

(A.12)

where 0 < ξ < 1, Q2 = maxt0≤t≤T ∥X (3)(t)∥, and X (3) is the third derivative of X (t). Therefore, the local error bound of the
implicit Trapezoid LADMM scheme is O(h3). Next, the global error bound of the implicit Trapezoid LADMM scheme (15) is:

∥εk+1∥ = ∥X (tk+1)−Xk+1∥
(b)

≤∥X (tk) +

∫ tk+1

tk

P(t,Θ,X (t))dt−
[
Xk +

h

2
(P(tk,Θk,Xk) +P(tk+1,Θk,Xk+1))

]
∥

≤∥εk∥+
1

12
Q2h

3 +

∫ tk+1

tk

∥ t− tk+1

tk − tk+1
P(tk,Θk,X (tk)) +

t− tk
tk+1 − tk

P(tk+1,Θk,X (tk+1))

− t− tk+1

tk − tk+1
P(tk,Θk,Xk)−

t− tk
tk+1 − tk

P(tk+1,Θk,Xk+1)∥dt

(A.13)

where
(b)

≤ holds because Ff (·) and Gg(·) are non-expansive mappings, and the last inequality holds due to the same reason as
in [1]. Due to | t−tk+1

tk−tk+1
| ≤ 1, we can get ∥ t−tk+1

tk−tk+1
(P(t,Θ,X1)−P(t,Θ,X2))∥ ≤ L∥X1 −X2∥ similarly. Thus,

∥εk+1∥ ≤
(
1 +

hL

2

)
∥εk∥+

hL

2
∥εk+1∥+

1

12
Q2h

3. (A.14)

Then, setting 1− hL
2 > 0, we have

∥εk+1∥ ≤
1 + hL

2

1− hL
2

∥εk∥+
1(

1− hL
2

) 1

12
Q2h

3

≤

(
1 + hL

2

1− hL
2

)k+1

∥ε0∥+

(1 + hL
2

1− hL
2

)k

+ · · ·+
1 + hL

2

1− hL
2

+ 1

 1(
1− hL

2

) 1

12
Q2h

3.

(A.15)

More generally,

∥εk∥ ≤

(
1 + hL

2

1− hL
2

)k

∥ε0∥+
Q2h

3

12hL

(1 + hL
2

1− hL
2

)k

− 1

 (k = 1, 2, · · · ) . (A.16)

We set x = 1
hL − 1

2 , so
(

1+hL
2

1−hL
2

)k
= (1 + 1

1
hL− 1

2

)
T−t0

h = (1 + 1
x )

(T−t0)L
2 (1 + 1

x )
(T−t0)Lx ≤ e(T−t0)L. Then, the global error

bound of implicit Trapezoid LADMM scheme (15) from the optimal trajectory can be estimated as follows:

∥εk∥ ≤ e(T−t0)L ∥ε0∥+
Q2h

3

12hL

[
e(T−t0)L−1

]
≜ O(h2), (k = 1, 2, · · · ) . (A.17)
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We finish the proof.

Accelerated unfolded Trapezoid LADMM scheme. Following the idea of the Trapezoid LADMM scheme (15), we
intuitively design the accelerated unfolded Trapezoid LADMM scheme as follows:

x̃k = xk +
1

hθk + 1
(xk − xk−1),

xk+1 = Ff

(
x̃k +

h2βk

2(1 + hθk)
(Fk(x̃k) + Fk(xk+1))

)
,

ỹk = yk +
1

hηk + 1
(yk − yk−1),

yk+1 = Gg

(
ỹk +

h2

2(1 + hηk)
(Gk(ỹk) +Gk(yk+1))

)
,

λ̃k = λk +
βk

βk + h
(λk − λk−1),

λk+1 = λ̃k +
h2βk

βk + h
(Axk+1 + yk+1 − b).

(A.18)

Similarly, since the accelerated Trapezoid LADMM scheme (A.18) is implicit, we also give an explicit version through the
prediction-correction strategy in Algorithm 1 in the main paper.

B. CONVERGENCE ANALYSIS OF OUR TRAPEZOID LADMM SCHEME

In this section, we give the convergence analysis of our non-accelerated explicit Trapezoid LADMM scheme. Firstly, we
introduce some definitions and assumptions. Secondly, we give Lemma B.1-B.3 in turn as an assistant to the proof of our
Theorem B.1. Thirdly, we prove the convergence of implicit Trapezoid LADMM scheme, i.e., Theorem B.1. And then we
analyze the convergence of our explicit scheme. Finally, we analyze the convergence rate of our Trapezoid LADMM schemes.
Our proofs in this section refer to [2].

We introduce the variational inequality VI(Ω,F, ϑ) := ϑ(u) − ϑ(u∗) + ⟨ω − ω∗,F∗(ω∗)⟩ ≥ 0, ∀ω ∈ Ω, ω∗ ∈ Ω∗ as a
convergence criterion, where u = (x,y)⊤,ω = (x,y,−λ)⊤,F∗(ω) = (A⊤λ,λ,Ax+y−b)⊤, ϑ(u) = f(x)+ g(y), and Ω∗

is the solution set of Problem (2). We define a matrix Dk = θk
h I− βk

2 W⊤
k A. The convergence of the Trapezoid LADMM scheme

necessitates the positive semi-definiteness of the matrix Dk and thus we also define the set S(ϵ) ≜ {(W, θ, β, η, h)|∥W−A∥F ≤
ϵ,D ≻ 0, β, θ, η, h > 0} as a limitation, where ∥ · ∥F is Frobenius norm. According to these definitions and assumptions, we
give Lemma B.1-B.3 in turn as an assistant to the proof of our Theorem B.1.

Lemma B.1. Let the sequence {ωk = (xk,yk,−λk)} be generated by implicit Trapezoid LADMM scheme (15), then we have
the same result as in [2]:

⟨λk+1 − λk,yk − yk+1⟩ ≥ 0. (B.19)

Lemma B.2. Let {ωk = (xk,yk,−λk)
⊤} be the sequence generated by the implicit Trapezoid LADMM scheme (15), then we

have
ϑ(u)− ϑ(uk+1) + (ω − ωk+1)

⊤[Fk(ωk+1) +Gk(yk − yk+1) +Hk(ωk+1 − ωk)] ≥ 0 (B.20)

where Fk(ω)=(W⊤
k λ,λ,Ax+ y − b)⊤, Gk(y) = (βkW

⊤
k y, βky,0)

⊤, and Hk is defined as:

Hk =

 Dk 0 0
0 βkI 0
0 0 1

βk
I

 . (B.21)

Note that this conclusion is similar to D-LADMM [2, Lemma 4.1], but our Dk = θkI− βk

2 W⊤
k A. Lemma B.2 indicates

that the quality ∥ωk − ωk+1∥2Hk
can be used to measure how accurate ωk+1 is for being a solution of VI(Ω,F, ϑ), where

∥ω∥2H = ⟨ω,Hω⟩. Since Hk is positive semi-definite, if ∥ωk − ωk+1∥2Hk
= 0, we can conclude that Hk(ωk+1 − ωk) = 0

and Gk(yk − yk+1) = 0, so for ∀ω, ϑ(u) − ϑ(uk+1) + ⟨ω − ωk+1,F
∗(ωk+1)⟩ ≥ 0 on the condition of Wk = A, which

means ωk+1 is a solution of VI(Ω,F, ϑ), i.e., the solution of Problem (2). Thus, we consider the bound of ∥ωk −ωk+1∥2Hk
in

Lemma B.3 below.

Lemma B.3. Let the sequence {ωk = (xk,yk,−λk)} be generated by the implicit Trapezoid LADMM scheme (15). Suppose
that, for any point ω∗ ∈ Ω∗, there exists suitable parameters Θ = {Wk, θk, ηk, βk}Kk=1 ∈ S(ϵ) such that:

⟨ωk+1 − ω∗,Hk(ωk − ωk+1)⟩ ≥ 0, ∀k ≥ 0 (B.22)

where Hk is given in (B.21), then ∥ωk∥ < ∞ holds for all k, and we have:

∥ωk − ω∗∥2Hk
≥ ∥ωk+1 − ω∗∥2Hk

+ ∥ωk − ωk+1∥2Hk
. (B.23)
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The conclusion of our Lemma B.3 is similar to D-LADMM [2, Lemma 4.2]. Lemma B.3 shows that there exist proper
learnable parameters that make ωk strictly contractive with respect to the solution set Ω∗, which plays a key role in the
convergence analysis below.

Theorem B.1 (Convergence of implicit Trapezoid LADMM scheme). Let the sequence {ωk = (xk,yk,−λk)
⊤} be generated

by the implicit Trapezoid LADMM scheme (15), then there exists Θ ∈ S(ϵ) such that {ωk} converges to a solution ω∗ of
Problem (2).

From the proof of our Theorem B.1, we know that our implicit Trapezoid LADMM scheme (15) converges to the solution of
Problem (2). And according to our conference version [3, Eq. (9)], our explicit Trapezoid LADMM scheme, i.e., Case 1 in
Algorithm 1, converges to implicit Trapezoid LADMM scheme when i is large enough. Thus our explicit Trapezoid LADMM
scheme achieves convergence. To further prove the convergence rate of the explicit Trapezoid LADMM scheme, we give
Theorem B.2.

Theorem B.2 (Convergence Rate of the explicit Trapezoid LADMM scheme). Let the sequence {ωk = (xk,yk,−λk)
⊤}

be generated by Case 1 in Algorithm 1 (non-accelerated explicit Trapezoid LADMM scheme). Suppose that there exist
(A, θ∗, η∗, β∗) and K0 > 0 such that for any k ≥ K0, the similar EBC in [2] holds. Then there exist suitable parameters
Θ = {Wk, θk, ηk, βk}Kk=1 ∈ S(ϵ) such that:

dist2Hk+1
(ωk+1,Ω

∗) < γ dist2Hk
(ωk,Ω

∗) (B.24)

where dist2H(ω,Ω∗) = minω∗∈Ω∗ ∥ω − ω∗∥2H and γ is a positive constant smaller than 1.

The conclusion of our Theorem B.2 is similiar to [2]. D-LADMM can find appropriate parameters to construct a solution that
is closer to Ω∗ than the solution produced by fixed parameters at each iteration. Hence, from our Theorem B.2, it is entirely
possible for the proposed implicit Trapezoid LADMM scheme to achieve the similar linear convergence rate as D-LADMM [2,
Theorem 3], which will be also confirmed in the experiments.

I. Proof of Lemma B.1

Proof. We know that [3, Eq. (9)] converges to implicit Trapezoid LADMM scheme. Thus, we only needs to prove the convergence
of implicit Trapezoid LADMM scheme (15). Without loss of generality, we assume h ≡ 1 and similar results can be obtained
for other values of h. About y-subproblem in (15), by the proximal operator Prox

g
βk
2

(z) = argminy{βk

4 ∥y − z∥2 + g(y)}
w.r.t. g, it can be written as:

argmin
y

{
g(y) +

βk

4
∥y − yk +

1

ηk

[
1

2
(yk + yk+1)− b+Axk+1 +

λk

βk

]
∥2
}
. (B.25)

By deriving the optimality conditions of the (B.25), we have

g(y)− g(yk+1) +

〈
y − yk+1,

βk

2
(yk+1 − yk) +

βk

2ηk

[
1

2
(yk + yk+1)− b+Axk+1 +

λk

βk

]〉
≥ 0. (B.26)

By setting ηk = 1
2 and combining λk+1 = λk + βk

(
Axk+1 + yk+1 − b

)
, we yield that

g(y)− g(yk+1) + ⟨y − yk+1,λk+1⟩ ≥ 0,∀y ∈ Rm. (B.27)

Obviously, analogous to (B.27), for yk ∈ Rm, we have

g(y)− g(yk) + ⟨y − yk,λk⟩ ≥ 0,∀y ∈ Rm. (B.28)

Setting y = yk and y = yk+1 in (B.27) and (B.28), respectively, and combining (B.27) and (B.28), we can get

⟨λk+1 − λk,yk − yk+1⟩ ≥ 0. (B.29)

We finish the proof.

II. Proof of Lemma B.2

Proof. Similarly, we take h ≡ 1 as an example and define the proximal operator w.r.t f as Proxfθk(z) = argminx{ θk
2 ∥x−

z∥2 + f(x)}. The x-subproblem in the implicit Trapezoid LADMM scheme (15) can be written as:

xk+1 = argmin
x

{
f(x) +

θk
2
∥x− xk +

1

θk
W⊤

k

(
λk + βk(

1

2
A(xk + xk+1) + yk − b)

)
∥2
}
. (B.30)
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By deriving the optimality conditions of (B.30), we have

f(x)− f(xk+1) +

〈
x− xk+1, θk(xk+1 − xk) +W⊤

k

(
λk + βk(

1

2
A(xk + xk+1) + yk − b)

)〉
≥ 0. (B.31)

Combining λk+1 = λk + βk

(
Axk+1 + yk+1 − b

)
yields that:

f(x)− f(xk+1) +

〈
x− xk+1, θk(xk+1 − xk) +W⊤

k

(
λk+1 + βk(yk − yk+1) +

βk

2
A(xk − xk+1)

)〉
≥ 0. (B.32)

From the λ-subproblem in the implicit Trapezoid LADMM scheme (15), we can see

1

βk
(λk+1 − λk)− (Axk+1 + yk+1 − b) = 0. (B.33)

In summary, combining (B.32), (B.33) and (B.27), we can get

ϑ(u)− ϑ(uk+1) +

 x− xk+1

y − yk+1

λk+1 − λ

 ◦


 W⊤

k λk+1

λk+1

(Axk+1 + yk+1 − b)

+

 βkW
⊤
k (yk − yk+1)

βk(yk − yk+1)
0

+

 Dk(xk+1 − xk)
βk(yk+1 − yk)
1
βk

(λk − λk+1)

 ≥ 0,∀ω ∈ Ω.

(B.34)

Using the notations of ω, Fk(ω), Gk(y) and Hk, we can obtain the assertion (B.20) immediately. Note that our Dk =
θkI− βk

2 W⊤
k A.

III. Proof of Lemma B.3

Proof. Please see D-LADMM [2, Lemma 4.2].

IV. Proof of Theorem B.1

Proof. From the Lemma B.3, given ω∗ ∈ Ω∗, there exists proper Θ = {Wk, θk, ηk, βk}Kk=1 such that:
∞∑
k=0

∥ωk − ωk+1∥2Hk
≤

∞∑
k=0

∥ωk − ω∗∥2Hk
− ∥ωk+1 − ω∗∥2Hk

≤ ∥ω0 − ω∗∥2H0
+

∞∑
k=0

∣∣∣∥ωk+1 − ω∗∥2(Hk+1−Hk)

∣∣∣ . (B.35)

This conclusion is the same as D-LADMM too. If we define some large enough (θ∗, η∗, β∗) and let Wk → A, θk → θ∗, βk → β∗

following Section B.3 in D-LADMM, then
∑∞

k=0

∣∣∣∥ωk+1 − ω∗∥2(Hk+1−Hk)

∣∣∣ < ∞ and further
∑∞

k=0 ∥ωk − ωk+1∥2Hk
< ∞.

Thus, we know that the sequence {ωk} is bounded and there exists a subsequence of ωk converges to ω∞. Then following [2,
Theorem 1], we can obtain ϑ(u)− ϑ(u∞) + ⟨ω − ω∞,F∗(ω∞)⟩ ≥ 0 and ωk → ω∞ as k → ∞ on the condition of Hk ≻ 0,
where ω∞ ∈ Ω∗. Thus, our implicit Trapezoid LADMM scheme (15) converges to the solution of Problem (2).

V. Proof of Theorem B.2

Proof. Without loss of generality, we assume that there exists some {Wk, θk, ηk, βk} to make the ωk+1 ̸= ωk. Otherwise we
can perturb (Wk, ηk, θk, βk) to make ωk+1 ̸= ωk. Due to ∥ωk+1 − ωk∥2Hk

̸= 0, there exists κk > 0 such that:

dist2Hk
(ωk+1,Ω

∗) ≤ κk∥ωk+1 − ωk∥2Hk
. (B.36)

Following (B.23), we have
dist2Hk

(ωk+1,Ω
∗) ≤ dist2Hk

(ωk,Ω
∗)− ∥ωk − ωk+1∥2Hk

. (B.37)

Combing the above inequality with (B.36), we get:

dist2Hk
(ωk+1,Ω

∗) ≤
(
1 +

1

κk

)−1 [
dist2Hk

(ωk,Ω
∗)
]
. (B.38)

According to [2, Theorem 2], we obtain:

dist2Hk+1
(ωk+1,Ω

∗) ≤ (1 +
1

cαk
)dist2Hk

(ωk+1,Ω
∗) (B.39)

where c > 0 is a constant and αk > 1. Combining (B.38) and (B.39), we can also obtain the monotonically decreasing property:

dist2Hk+1
(ωk+1,Ω

∗) < dist2Hk
(ωk,Ω

∗). (B.40)
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TABLE C.1
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH

SALT-AND-PEPPER NOISE RATE 5%. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED IN RED, BLUE, AND GREEN COLORS,
RESPECTIVELY.

Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time(s)

D-LADMM (K=15 [2]) 34.68 33.69 29.05 33.46 32.57 33.88 35.91 33.26 27.17 34.88 35.19 38.62 33.53 0.2733
ELADMM (K=15, Ours) 34.92 33.55 29.86 33.57 32.58 33.61 35.85 33.57 27.64 34.96 35.95 38.88 33.75 0.2741
A-ELADMM (K=15, Ours) 34.83 35.24 29.59 35.29 36.41 36.39 38.41 34.62 27.18 36.26 39.00 41.65 35.40 0.2868
TLADMM (K=8, Ours) 36.69 35.79 30.61 36.30 36.68 37.35 39.54 35.66 26.66 36.91 39.63 41.93 36.15 0.2868
TLADMM (K=15, Ours) 36.89 36.30 30.32 36.79 37.18 37.24 39.81 36.00 26.84 37.14 40.14 42.07 36.39 0.5601
A-TLADMM (K=8, Ours) 36.70 35.66 30.77 36.06 36.29 37.07 38.39 35.75 28.24 36.95 38.94 41.30 36.01 0.2899
A-TLADMM (K=15, Ours) 37.25 35.81 30.81 36.91 37.39 37.93 39.80 36.57 28.45 37.47 40.12 42.22 36.72 0.5635

Then, there are two cases to be discussed.
Case 1: When k ≥ K0, under the similar EBC condition: dist2H∗(ω̃,Ω∗) ≤ κ∥ω̃ − ωk∥2H∗ as in [2], where κ is a positive

constant and H∗ is given in (B.21) by setting (Wk, θk, ηk, βk) as (A, θ∗, η∗, β∗), we can get:

dist2Hk+1
(ωk+1,Ω

∗) < κ1∥ωk+1 − ωk∥2Hk
. (B.41)

Case 2: When k < K0, from the convergence of our Trapezoid LADMM scheme in Theorem B.1 and the inequality
(B.23), we know that dist2Hk+1

(ωk+1,Ω
∗) < ∥ω0 − ω∗∥2H0

+
∑K0

k=0

∣∣∣∥ωk+1 − ω∗∥2(Hk+1−Hk)

∣∣∣ < ∞. Hence there exists one

constant C > 0 such that dist2Hk+1
(ωk+1,Ω

∗) < C. Since ∥ωk − ωk+1∥2Hk
̸= 0, there exists one constant ϵ > 0 such that

∥ωk − ωk+1∥2Hk
> ϵ. We immediately have:

dist2Hk+1
(ωk+1,Ω

∗) <
C

ϵ
∥ωk+1 − ωk∥2Hk

. (B.42)

Letting κ = max{C
ϵ , κ1} and combining (B.37) and (B.40), we get

dist2Hk+1
(ωk+1,Ω

∗) <

(
1 +

1

κ

)−1

dist2Hk
(ωk,Ω

∗).

To sum up, dist2Hk
(ω,Ω∗) converges to zero linearly. Furthermore, combining [3, Eq. (9)], our explicit Trapezoid LADMM,

i.e., Case 1 in Algorithm 1, converges to implicit Trapezoid LADMM scheme (15) when i is large enough. Thus, there exists
a set of learnable parameters that helps Algorithm 1 achieve the same linear convergence, which will be confirmed in the
experiments. We finish the proof.

C. MORE EXPERIMENTAL DETAILS AND RESULTS

In this section, we display the detailed execution of the experiments and more experimental results. All methods are
implemented on the NVIDIA GeForce RTX 2080Ti and PyTorch platform.

I. Simulation Experiments

In the simulation experiments, we set m = 250 and d = 500. For training, we set the batch size to 16 and adopt the stochastic
gradient descent (SGD) [4] algorithm with a learning rate lr = 0.0001 to train all the networks. The numbers of training
and testing samples are set to 10,000 and 1,000, respectively. Each entry in the matrix A is sampled from i.i.d. Gaussian
distribution, namely Ai,j ∼ N (0, 1/m), and then we normalize its columns so that they have ℓ2-norm units. The generation of
x and y is similar to [2]. For a fair comparison, the matrix A is the same in all the methods.

II. Natural Image Denoising

Experiment Setting. In this experiment, dictionary A ∈ R256×512 is obtained by clean images [5]. b in the training set
contains 10,000 noisy image blocks with patch size 16× 16 for LADMM-type methods. We adopt Adam optimizer [6] with
a learning rate lr = 0.0002 to train all the methods with a batch size of 16 and we set the number of training epoch to 20
for D-LADMM, our (A-)ELADMM and our (A-)TLADMM. Note that we use Loss2 as training loss function in all of our
networks. The test dataset contains 1,024 image blocks for LADMM-type methods and “Time” in Table C.1 - C.3 refers to the
GPU time used to restore all test image blocks.

Additional Results. We further show the denoising performance of individual images in dataset WBZG at different noise
ratios, and the experimental results are shown in Table C.1 - C.3, which all demonstrate the advantages of our algorithms.
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TABLE C.2
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH

SALT-AND-PEPPER NOISE RATE 10%.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time (s)

D-LADMM (K=15, [2]) 32.12 31.16 26.36 31.63 31.44 32.53 35.23 31.06 24.75 34.66 34.82 37.82 31.97 0.2756
D-LADMM (K=30) 30.55 30.23 25.67 30.78 30.11 31.46 34.50 30.12 23.24 32.12 34.13 35.62 30.71 0.5685
ELADMM (K=15, Ours) 32.07 31.38 26.45 31.49 31.68 32.37 35.67 30.88 23.96 34.20 34.32 37.92 31.87 0.2748
TLADMM (K=8, Ours) 33.36 33.29 27.94 32.98 33.65 34.39 37.75 32.94 24.58 34.13 36.43 39.30 33.39 0.2701
TLADMM (K=15, Ours) 34.46 33.40 28.26 33.65 34.30 34.58 39.33 33.24 25.07 34.92 37.06 40.27 34.04 0.5031
A-ELADMM (K=15, Ours) 32.99 32.89 27.92 32.82 33.53 33.89 37.49 32.56 25.39 34.45 36.47 39.38 33.32 0.2905
A-TLADMM (K=15, Ours) 34.38 33.47 28.38 33.59 34.86 34.68 39.63 33.31 25.83 34.18 37.88 40.32 34.21 0.5621

TABLE C.3
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH

SALT-AND-PEPPER NOISE RATE 15%.

Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time(s)

D-LADMM (K=15 [2]) 29.11 29.43 23.36 29.55 28.91 30.93 32.72 29.35 20.28 31.84 34.26 36.71 29.70 0.2754
ELADMM (K=15, Ours) 29.63 29.54 23.66 29.51 28.77 30.85 32.72 29.82 20.61 31.78 34.85 36.64 29.86 0.2745
A-ELADMM (K=15, Ours) 29.51 30.56 24.92 30.29 30.92 31.61 33.48 29.91 23.08 31.72 35.83 37.64 30.79 0.2749
TLADMM (K=8, Ours) 29.83 30.52 24.14 29.62 29.54 32.78 34.13 31.32 22.25 33.14 36.06 38.62 31.00 0.2701
TLADMM (K=15, Ours) 31.24 31.56 25.81 30.88 32.26 32.93 34.54 30.86 22.28 32.87 36.09 38.69 31.67 0.5022
A-TLADMM (K=8, Ours) 31.33 31.34 26.75 31.46 31.98 32.97 34.82 31.36 24.18 32.59 35.54 38.58 31.91 0.2711
A-TLADMM (K=15, Ours) 31.78 31.59 26.58 31.97 32.88 33.09 35.16 31.65 24.17 32.77 36.72 39.21 32.30 0.5031

Comparison with MPRNet [7]: We tested the performance of MPRNet on our salt-and-pepper denoising task, and the
experimental results are shown in Table C.4. It can be seen that the performance of MPRNet is not as good as our algorithms.
This is mainly because the test dataset contains only gray-scale images, while MPRNet requires the input in RGB color space.
Using gray-scale images as input to MPRNet will increase interference information. Thus, we conduct the image denoising task
on a color FFHQ 256×256-1k dataset [8]. We add the same salt-and-pepper noise on the FFHQ 256×256-1k dataset for our
TLADMM, A-TLADMM, and MPRNet [7] on this denoising task and denoising results are shown in Table C.5, where we
implemented the source code of MPRNet and D-LADMM as baselines.

TABLE C.4
COMPARISON OF THE PSNR (DB) RESULTS IN THE NATURAL IMAGE DENOISING TASK ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SET AT

SALT-AND-PEPPER NOISE RATE 15%.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave.

MPRNet [7] 20.48 22.05 19.35 19.89 20.89 19.10 21.76 22.77 18.46 22.26 23.48 22.58 21.09
ELADMM 29.63 29.54 23.66 29.51 28.77 30.85 32.72 29.82 20.61 31.78 34.85 36.64 29.86
A-ELADMM 29.51 30.56 24.92 30.29 30.92 31.61 33.48 29.91 23.08 31.72 35.83 37.64 30.79
TLADMM 31.24 31.56 25.81 30.88 32.26 32.93 34.54 30.86 22.28 32.87 36.09 38.69 31.67
A-TLADMM 31.78 31.59 26.58 31.97 32.88 33.09 35.16 31.65 24.17 32.77 36.72 39.21 32.30

TABLE C.5
COMPARISON OF THE PSNR AND SSIM RESULTS ON THE COLOR FFHQ 256× 256-1K DATASET [8] AT SALT-AND-PEPPER NOISE RATIOS 5%, 10% AND

15%.

Algorithms 5% 10% 15% #Params (Millions)
PSNR SSIM PSNR SSIM PSNR SSIM

MPRNet [7] 27.03 0.7870 24.27 0.7182 22.65 0.6710 20.1
D-LADMM [2] 34.37 0.9118 32.01 0.8489 28.77 0.7591 2.09
TLADMM (Ours) 36.45 0.9204 33.25 0.8801 30.35 0.8132 1.97
A-TLADMM (Ours) 37.02 0.9258 33.61 0.8886 29.62 0.7942 1.97

From Table C.5, in the case of sparse salt-and-pepper noise, our methods outperform MPRNet at different noise
ratios, while MPRNet [7] is a proven efficiency method on the smartphone image denoising datasets such as SIDD
https://www.eecs.yorku.ca/ kamel/sidd/dataset.php, but it is a black-box model. In contrast, our algorithms are inspired by
traditional optimization, are white-box, provable, and have stronger interpretability like the work [2]. Moreover, the number of
parameters of our methods is much less than that of MPRNet, which makes them more adaptable to small-scale datasets.

Ablation study on the FFHQ 256×256-1k dataset: For more robust and concrete evidence of the effectiveness, we also
conduct an ablation study on the FFHQ 256× 256-1k dataset to assess how much our loss Loss2 and trapezoid structure each
contribute, and the results are shown in Table C.6. It can be found that only changing the loss function can still maintain the

https://www.eecs.yorku.ca/~kamel/sidd/dataset.php
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performance of D-LADMM, which indicates that taking the objective function as the training loss can impose strict constraints
on the training procedure and it can be regarded as a substitute for no ground truth. Furthermore, we changed the network
structure to our trapezoid structure, and this improvement (1.3dB) is far more significant than above. It is also verified that the
trapezoid structure plays a more important role than our loss function.

TABLE C.6
COMPARISON OF DENOISING RESULTS PSNR WITH DIFFERENT K ON THE FFHQ 256× 256-1K DATASET AT 10% SALT-AND-PEPPER NOISE.

Algorithms

PSNR Layers

K = 9 K = 12 K = 15 K = 18 Ave.

Original D-LADMM [2] 31.10 32.07 32.01 31.55 31.68
D-LADMM, our Loss2 31.39 32.52 32.30 30.82 31.76
TLADMM, our Loss2 32.63 33.78 33.25 32.81 33.12

III. Natural Image Inpainting

Experiment Setting. We divide the images in the BSDS500 dataset [9] into image blocks and randomly select N = 50, 000
and N = 1, 000 8× 8 image patches for training and validation, respectively. We implement other algorithms by ourselves and
implement our methods based on the source code of LFISTA [10]. The training batch size is set to 256 and the SGD optimizer
is used. The input to our network is triplets {bi,Mi,x

∗}Ni=1 of the corrupt train patches bi, their corresponding mask Mi, and
the solutions x∗ is generated by 300 iterations of the FISTA on the corrupt signals. For Problem (25), the specific structure of
the k-th layer of our TLADMM is as follows:

x0
k+1 = Ff

(
xk +

hβk

θk
Fk(xk)

)
,

xk+1 = Ff

(
xk +

hβk

2θk

[
Fk(xk) + Fk(x

0
k+1)

] )
,

y0
k+1 =

βk

1 + βk

(
yk − h

ηk
(MDxk+1 + yk − b+

λk

βk
)
)
,

yk+1 =
βk

1 + βk

(
yk − h

2ηk

(
(MDxk+1 + yk − b+

λk

βk
) + (MDxk+1 + y0

k+1 − b+
λk

βk
)
))
,

λk+1 = λk + hβk (yk+1 +MDxk+1 − b)

(C.43)

where Fk(x) = − (MWk)
⊤
(MDx+yk−b+ λk

βk
), Wk is a learnable matrix, initialized to D, A = MD, Ff (·) = ST (·, τ1),

and Gg(·) = βk

1+βk
I(·). Note that the y-update generalizes its closed solution (i.e., yk+1 = βk

1+βk

(
− (MDxk+1 − b+ λk

βk
)
)
).

Furthermore, by adding extrapolation steps, we can obtain the network structure of our A-TLADMM:

x̃k = xk + 1
hθk+1 (xk − xk−1),

x0
k+1 = Ff

(
x̃k + βkh

2

1+hθk
Fk(x̃k)

)
,

xk+1 = Ff

(
x̃k + βkh

2

2(1+hθk)

[
Fk(x̃k) + Fk(x

0
k+1)

] )
,

ỹk = yk + 1
hηk+1 (yk − yk−1),

y0
k+1 = βk

1+βk

(
ỹk − h2

1+hηk
(MDxk+1 + ỹk − b+ λk

βk
)
)
,

yk+1 = βk

1+βk

(
ỹk − h2

2(1+hηk)

(
(MDxk+1 + ỹk − b+ λk

βk
) + (MDxk+1 + y0

k+1 − b+ λk

βk
)
))
,

λ̃k = λk + βk

βk+h (λk − λk−1),

λk+1 = λ̃k + βkh
2

βk+h (yk+1 +MDxk+1 − b) .

(C.44)

Additional Results. More recovered results of some methods for the image inpainting task with 50% missing pixels are
shown in Fig. C.2 - C.7. All of these demonstrate the strengths of our algorithms.

IV. Compressive Sensing for Natural Images

In this subsection, we describe some experimental details about our (A-)ELADMM-Net and (A-)TLADMM-Net. To reduce
complexity, we avoided the matrix inversions due to closed solutions in the CS model by the following derivation. About x
update, our networks actually solve the x-subproblem as follows:

xk+1 = argmin
x

{1
2
∥c−Φx∥2 + βk

2
∥x− yk +

λk

βk
∥2}. (C.45)
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We linearize the quadratic terms in (C.45) at xk by the Taylor’s formula and add a proximal term 1
2∥x− xk∥2, thus (C.45) can

be approximated as:

xk+1 = argmin
x

{1
2
∥x− xk −Φ⊤(c−Φxk) + βk(xk − yk +

λk

βk
)∥2}. (C.46)

Thus, we can obtain the k-th layer of our TLADMM-Net:

x0
k+1 = Φ⊤(c−Φxk) + xk − hβk

(
xk − yk +

λk

βk

)
,

xk+1 = Φ⊤(c−Φxk) + xk − hβk

2

(
xk − yk +

λk

βk
+ x0

k+1 − yk +
λk

βk

)
,

y0
k+1 = Gg

(
yk − h

ηk

(
xk+1 − yk +

λk

βk

))
,

yk+1 = Gg

(
yk − h

2ηk

(
xk+1 − yk +

λk

βk
+ xk+1 − y0

k+1 +
λk

βk

))
,

λk+1 = λk + hβk

(
xk+1 − yk+1

)
(C.47)

where Gg(·) = T̃
(
ST (T (·), τ2)

)
, T̃ is the inverse transformation of T , and Ff (·) = Φ⊤(c − Φxk) + (·). Note that the

transformation T is the same as in [11]. Similarly, the structure of our ELADMM-Net can be obtained. In our experiments, we
also initialize βk as a small value to allow us to find the next point on a larger scale. From (C.45) to (C.47), we successfully
avoid the matrix inversions about x-update, which contributes to reducing reconstruction time with little loss of accuracy.
Furthermore, by adding the extrapolation steps for (x,y,λ), the network structure of A-TLADMM-Net can be also obtained.

Calculation of the parameter quantities of our (A-)TLADMM-Net and (A-)ELADMM-Net: for example, under CS ratio
γ = 30%, the number of parameters of our ELADMM-Net is (32×32×3×3×2+32×3×3×2+3)×10+327×33×33 = 546, 213,
our A-ELADMM-Net is 546,243, our TLADMM-Net is (32×32×3×3×2+32×3×3×2+7)×10+327×33×33 = 546, 253,
our A-TLADMM-Net is 546,283, while the number of parameters of ISTA-Net++ is 760, 220, COAST is 1, 122, 056, and
DPC-DUN is about 1, 100, 000.

Experiment Setting. We set the size of the image block to 33×33. Then, for a given CS ratio, the corresponding measurement
matrix Φ is constructed by generating a random Gaussian matrix and then orthogonalizing its rows, i.e., ΦΦ⊤ = I. We initialize
x0 = Φ⊤c as well as y0. For training, we use the Adam optimizer and train all the methods to 400 epochs with batch size 64.
We set a learning rate lr = 0.0001 to train our networks for a fair comparison. More comparison results are shown in Table C.8.

An Ablation Experiment for Loss Functions. In this compressive sensing task, we actually have verified the performance
of some compared algorithms trained by our Loss1 as shown in Table C.7. It can be seen that MAC-Net and DPC-DUN
trained with our Loss1 perform clearly worse than their original versions, respectively. ISTA-Net++ and COAST with our
Loss1 perform relatively well, but they can only achieve similar levels as their original methods. Based on this analysis, we
compared the source code results of the compared algorithms in our main paper.

TABLE C.7
COMPARISON OF NATURAL IMAGE COMPRESSIVE SENSING RESULTS IN TERMS OF PSNR (DB) WITH DIFFERENT LOSS FUNCTIONS AT SAMPLED RATIOS

γ =10%, 20%, 30%, 40% AND 50% ON THE TEST DATASETS, BSD68 AND SET11. WE BOLD THE HIGHER PSNR FOR THE SAME NETWORK.

Algorithms
Datasets BSD68 Set11

10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.
Original MAC-Net (ECCV2020, [12]) 25.70 28.23 30.10 31.89 33.37 29.86 27.92 31.54 33.87 36.18 37.76 33.45
MAC-Net with our Loss1 25.35 27.88 29.85 31.54 33.00 29.52 27.35 30.98 33.30 35.77 37.28 32.94
Original ISTA-Net++ (ICME2021, [13]) 26.25 29.00 31.10 33.00 34.85 30.84 28.34 32.33 34.86 36.94 38.73 34.24
ISTA-Net++ with our Loss1 26.09 28.93 31.12 33.08 34.98 30.84 27.82 32.11 34.92 37.16 39.05 34.21
Original COAST (TIP2021, [14]) 26.28 29.00 32.10 32.93 34.74 31.01 28.69 32.53 35.04 37.13 38.94 34.47
COAST with our Loss1 26.18 28.95 31.99 32.92 34.71 30.95 28.21 32.27 34.89 37.01 38.87 34.25
Original DPC-DUN (TIP 2023, [15]) 26.82 29.66 31.81 33.75 35.68 31.54 29.33 32.86 35.80 37.88 39.79 35.13
DPC-DUN with our Loss1 25.78 28.59 30.77 32.61 34.41 30.43 27.62 31.17 34.07 36.01 37.89 33.35

V. Compressive Sensing on Speech Data

For speech data, the network structures of our (A-)TLADMM-Net are the same as those in natural image compressive
sensing. Following [24], we add zero-mean Gaussian noise with standard deviation std = 10−4 to the measurements and choose
the CS ratio 25% and 40% for analysis. We use a column orthogonal matrix Φ to downsample raw speech data and treat
soft-thresholding parameters as trainable values.

An Ablation Experiment for Loss Functions. In this compressive sensing on speech data experiment, when training the
compared algorithms ISTA-Net+, HSSE and ADMM-DAD, the experimental performance using our Loss1 is slightly better
than that of using the original loss, as shown in Table C.9. For a fair comparison, all the methods use the Loss1 as the loss
function.
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TABLE C.8
COMPARISON OF IMAGE COMPRESSIVE SENSING RESULTS IN TERMS OF PSNR (DB) UNDER DIFFERENT SAMPLED RATIOS γ = 10%, 20%, 30%, 40% AND
50% ON THE BSD68 AND SET11 DATASETS. AS WE CAN SEE, OUR NETWORKS ACHIEVE MUCH BETTER RESULTS THAN OTHER METHODS IN THE CASES OF

ALL THE SAMPLED RATIOS.

Algorithms
Datasets BSD68 Set11

10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.
LDAMP (NeurIPS2017, [16]) 23.94 27.74 30.28 32.12 32.89 29.39 24.71 30.65 33.87 36.03 36.60 32.37
ISTA-Net+ (CVPR2018, [11]) 25.24 28.00 30.20 32.10 33.93 29.89 26.57 30.85 33.74 36.05 38.05 33.05
DPDNN (TPAMI2019, [17]) 24.81 27.28 29.22 30.99 32.74 29.01 26.09 29.75 32.37 34.69 36.83 31.95
GDN (TCI2019, [18]) 25.19 27.95 29.88 32.07 34.09 29.84 26.03 30.16 32.95 35.25 37.60 32.40
SCSNet (CVPR2019, [19]) 27.28 29.01 31.87 33.86 35.77 31.56 28.48 31.95 34.62 36.92 39.01 34.20
DPA-Net (TIP2020, [20]) 25.33 - 29.58 - - - 27.66 - 33.60 - - -
MAC-Net (ECCV2020, [12]) 25.70 28.23 30.10 31.89 33.37 29.86 27.92 31.54 33.87 36.18 37.76 33.45
COAST (TIP2021, [14]) 26.28 29.00 32.10 32.93 34.74 31.01 28.69 32.53 35.04 37.13 38.94 34.47
ISTA-Net++ (ICME2021, [13]) 26.25 29.00 31.10 33.00 34.85 30.84 28.34 32.33 34.86 36.94 38.73 34.24
GPX-ADMM-Net (EUSIPCO2021, [21]) 25.30 27.79 29.32 31.99 33.25 29.53 27.46 31.36 33.85 36.28 38.32 33.45
HSSE (TNNLS2022, [22]) 26.29 28.99 32.01 32.75 34.75 30.96 28.69 - 34.92 37.04 38.92 -
LGSR (TNNLS2023, [23]) 26.33 29.78 32.30 34.32 36.33 31.81 28.24 - 34.93 37.10 38.99 -
DPC-DUN (TIP 2023, [15]) 26.82 29.66 31.81 33.75 35.68 31.54 29.33 32.86 35.80 37.88 39.79 35.13
ELADMM-Net (K=20, Ours) 27.01 29.53 32.01 33.89 35.82 31.65 28.34 32.51 34.72 37.32 38.71 34.32
A-ELADMM-Net (K=10, Ours) 27.33 29.81 32.40 34.10 36.22 31.97 28.54 32.70 34.95 37.56 38.89 34.53
TLADMM-Net (K=10, Ours) 27.76 30.38 32.68 34.78 36.82 32.48 28.95 32.81 35.73 38.18 40.32 35.19
A-TLADMM-Net (K=10, Ours) 27.67 30.60 32.82 34.90 36.95 32.59 29.20 33.02 35.87 38.24 40.42 35.35
A-TLADMM-Net (K=20, Ours) 27.94 30.86 33.21 35.36 37.41 32.96 29.43 33.35 36.14 38.61 40.89 35.68

TABLE C.9
COMPARISON OF THE TEST MSE RESULTS (×10−2 AND ×10−4) ON THE TIMIT AND SPEECHCOMMANDS DATASETS WITH DIFFERENT LOSS FUNCTIONS

AT CS RATIOS γ = 25%, 40%.

Algorithms
Datasets TIMIT SpeechCommands

25% 40% 25% 40%
Original ISTA-Net+ [11] 2.245 2.049 0.589 0.474
ISTA-Net+ with our Loss1 2.232 2.029 0.584 0.462
Original HSSE [22] 1.214 0.931 0.698 0.347
HSSE with our Loss1 0.911 0.829 0.476 0.362
Original ADMM-DAD [24] 0.794 0.431 0.254 0.146
ADMM-DAD with our Loss1 0.791 0.424 0.252 0.134

More visual results of the spectrograms are shown in Fig. C.8 and the reconstruction examples of the raw speech
samples under γ = 40% on dataset TIMIT are provided in another folder in https://github.com/Weixin-An/A-TLADMM-
Net/tree/master/Speech%20CS. All of these verify that our algorithms can distinguish more frequencies than baseline methods.

VI. Compressive Sensing MRI

About CS MRI, the iterations of (A-)ELADMM-Net and (A-)TLADMM-Net can also be derived in the same way. The
sampling mode is used pseudo radial sampling. We evaluate the Structure Similarity Index Measure (SSIM) as follows:

SSIM(xK ,x∗) =
(2µxK

µx∗ + c3)(2δxKx∗ + c4)

(µ2
xK

µ2
x∗ + c3)(δ2xK

δ2x∗ + c4)
,

between the network output xK and the ground truth, where µxK
and µx∗ represent the mean values of xK and x∗ respectively;

δ2xK
and δ2x∗ represent the variances of xK and x∗ respectively; δxKx∗ represents the covariance of xK and x∗, and the constant

c3, c4 prevents the exception of dividing by 0.
An Ablation Experiment for Loss Functions. In this MRI CS experiment, ADMM-Net uses the averaged normalized root

mean square error (NRMSE). For a fair comparison, we replace its loss function with our Loss1 and the experimental results
are almost the same, as shown in Table C.10. As for ISTA-type methods, we replace their ℓ2-norm loss with our Loss1, and
the experimental performance is slightly worse. Thus, we still used their original loss functions to train them.

We also test all the methods at the same time cost and the results are shown in Fig. C.1. At relatively high CS ratios, our
A-TLADMM-Net always reconstructs higher quality images than the compared methods. Moreover, our networks still perform
much better than ADMM-Net at the same time cost. Our TLADMM-Net also enjoys better performance than ELADMM-Net. At
relatively low CS ratios, our TLADMM-Net and A-TLADMM-Net are competitive with the reconstruction results of ISTA-Net+.

More visual results are shown in Fig. C.9. This experiment verified that the (accelerated) Trapezoid LADMM schemes
are more accurate than the (accelerated) Euler LADMM schemes, which also inspires us to try more accurate numerical
discretizations, such as the linear multi-step discretization, to improve performance on the CS MRI task.

https://github.com/Weixin-An/A-TLADMM-Net/tree/master/Speech%20CS
https://github.com/Weixin-An/A-TLADMM-Net/tree/master/Speech%20CS
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TABLE C.10
COMPARISON OF TEST PSNR (DB) RESULTS FOR COMPRESSIVE SENSING MRI WITH DIFFERENT LOSS FUNCTIONS.

Algorithms CS Ratio γ
20% 30% 40% 50%

Original ADMM-Net [25] 37.17 39.84 41.56 43.00
ADMM-Net with our Loss1 37.31 39.92 41.55 42.98
Original ISTA-Net [11] 38.30 40.52 42.12 43.60
ISTA-Net with our Loss1 38.11 40.37 42.04 43.55
Original ISTA-Net+ [11] 38.73 40.89 42.52 44.09
ISTA-Net+ with our Loss1 38.78 40.75 42.53 44.05

20%

ADMM-Net

ISTA-Net

ISTA-Net+

ELADMM-Net

A-ELADMM-Net

TLADMM-Net

A-TLADMM-Net

38.52

38.45

38.54

37.17

38.88

38.77

38.88

37

37.2

37.4

37.6

37.8

38

38.2

38.4

38.6

38.8

39

30%

ADMM-Net

ISTA-Net

ISTA-Net+

ELADMM-Net

A-ELADMM-Net

TLADMM-Net

A-TLADMM-Net

40.77

39.84

40.93

40.99

40.89

40.91

40.89

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

41.2

40%

ADMM-Net

ISTA-Net

ISTA-Net+

ELADMM-Net

A-ELADMM-Net

TLADMM-Net

A-TLADMM-Net

41.56

42.59

42.71

42.48

42.56

42.69

42.75

41

41.2

41.4

41.6

41.8

42

42.2

42.4

42.6

42.8

50%

ADMM-Net

ISTA-Net

ISTA-Net+

ELADMM-Net

A-ELADMM-Net

TLADMM-Net

A-TLADMM-Net

44.06

44.11

43.00

44.19

44.30

44.25

44.45
42.5

43

43.5

44

44.5

Fig. C.1. Comparison of test PSNR (dB) results for CS-MRI on the brain dataset at the same time cost.
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Original image Corrupted, 11.1 D-LADMM, 26.51 ELADMM, 26.54 A-ELADMM, 28.36 TLADMM, 27.08 A-TLADMM, 30.00

Fig. C.2. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Barbara.

Original image Corrupted, 10.6 D-LADMM, 30.91 ELADMM, 30.84 A-ELADMM, 31.86 TLADMM, 31.58 A-TLADMM, 32.86

Fig. C.3. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Boat.

Original image Corrupted, 10.2 D-LADMM, 34.11 ELADMM, 34.15 A-ELADMM, 33.90 TLADMM, 34.75 A-TLADMM, 35.26

Fig. C.4. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on House.

Original image Corrupted, 10.9 D-LADMM, 34.31 ELADMM, 34.55 A-ELADMM, 31.31 TLADMM, 35.08 A-TLADMM, 32.36

Fig. C.5. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Lena.

Original image Corrupted, 10.9 D-LADMM, 29.84 ELADMM, 29.75 A-ELADMM, 29.87 TLADMM, 30.09 A-TLADMM, 30.75

Fig. C.6. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Peppers.

Original image Corrupted, 11.2 D-LADMM, 31.14 ELADMM, 31.38 A-ELADMM, 31.34 TLADMM, 31.94 A-TLADMM, 32.28

Fig. C.7. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Couple.
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Fig. C.8. Comparison of the visual results for the speech CS task at γ=40% on TIMIT. From top to bottom, the spectrograms of Ground
Truth, ADMM-DAD [24], ELADMM-Net (Ours), A-ELADMM-Net (Ours), TLADMM-Net (Ours), and A-TLADMM-Net (Ours).
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35.25 dB/0.9311 36.84 dB/0.9400 41.54 dB/0.9487 44.27 dB/0.9732 45.28 dB/0.9804 31.16 dB/0.8693

35.95 dB/0.9359 37.50 dB/0.9438 42.04 dB/0.9519 44.89 dB/0.9760 46.62 dB/0.9853 31.90 dB/0.8844

36.25 dB/0.9387 37.75 dB/0.9464 42.15 dB/0.9527 45.12 dB/0.9769 46.99 dB/0.9865 32.28 dB/0.8914

36.85 dB/0.9260 38.26 dB/0.9377 42.55 dB/0.9561 45.25 dB/0.9768 46.87 dB/0.9855 32.84 dB/0.9000

Fig. C.9. Examples of visual results and PSNR/SSIM of the MRI compressive sensing task on the brain dataset with CS ratio γ = 20%. From
top to bottom, the results of Ground Truth, ELADMM-Net (Ours), A-ELADMM-Net (Ours), TLADMM-Net (Ours), and A-TLADMM-Net
(Ours).
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