Supplementary Material for “DEs-Inspired Accelerated Unfolded
Linearized ADMM Networks for Inverse Problems”

There are some detailed explanations for the main paper. Firstly, we give the proofs of Lemma 2 and Theorem 1 in Section
Secondly, the convergence analysis of the explicit Trapezoid LADMM scheme is given in Section [B] Finally, we provide more
experimental details and results in Section [C|

A. DES FORM AND ERROR ANALYSIS

1. Proof of Lemma 2

Proof. Our implicit Trapezoid LADMM scheme (15) can be rewritten as the following minimizing problems:

XK1 :argmin{f( )+ ||X*Xk+ hB (Fre(xk) + Fr(xit1)) || }

20y,
. h 2 (A1)
= —lly — —(G G :
Yk+1 &rg;mn {9(3’) + Qth i+ Qle( k(Yr) + k(Yk+l))H },
Abt1 = Ap + hBe(AXpi1 + yis1 — b).
In the similar way, we can have the first-order optimality conditions of (A.I):
0 hj
0€0f(Xpy1)+ f (Xk+1 — X + ﬁf(Fk(Xk) + Fk(karl)))v
U O (A2)
0€dg(yrsr) + (}’k+1 Vit g (Gr(yr) + Gk(Yk+1)))a
0= Aps1 — Ay — hBk(AXp41 + Yit1 — b).
From the first inclusion, we obtain
X - X 1
0 € df(xp41) + Qk% 3 (Wi (A + Br(Axy, + yx — b)) + W (A + Br(Axpp1 +yx — b)) - (A3)
We also see that limy,_,o 1% = X(t), x311 = X(t + h) 220 X (1), yra1 = Y(E+h) 225 Y(8), and Ay =
A(t + 1) 2=% A(t). Then,
@B3) 2% 0 € 0f(X (1)) + 0X(t) — F(X(1)). (A4)

And 0 € 9g(Y (t))+ 1Y (t) — G(Y (t)) can be obtained in the same way. Finally, about X, we can also obtain A(t) — B(AX(t)+
Y (t) —b) = 0. We consider the Moreau-Yosida approximations f,, (x) and g, (y) of objective f(x) and g(y) with 1, 12 > 0.
Then the implicit Trapezoid LADMM scheme (15) also corresponds to solving the approximating DEs (8). In this case, the
accuracy or error of the two schemes can be compared. Conversely, if our Euler LADMM scheme and Trapezoid LADMM
scheme do not correspond to solving the same DEs, then the Trapezoid LADMM scheme may not generate an unfolded network
with faster convergence despite its higher precision. O

II. Proof of Theorem 1

Proof. In this subsection, we give the local and global error bound analysis of our Euler LADMM scheme (7) and Trapezoid
LADMM scheme (15), and our analysis refers to [1l]. We first review the following notations.

1. Xpy1 = (XkT+17y1:+1, AE_H)T is an iterative solution;

2. The optimal trajectory function is X (t) = (X(¢)",Y(¢)",A(t)") " and initial value X(0) = (x4 ,¥q,Ag) " ;

3. Let P(t,0,X) = (5(F(X) =Vf(X) T, - (G(Y) =Vg(Y) ", B(AX +Y —b)")7, omitting ¢, and © = (W, 0,7, ).
Under the assumptions mentioned in Theorem 1 and these definitions, we can obatin a differential equation w.r.t. &, i.e.,
X =P(t,0,X), with the initial condition X'(0) = Xj.

Besides, the optimal value at ¢, is defined as X(t), tx € [0,7]. The global error bound from optimal trajec-
tory is defined as ery; = X(tr+1) — Xkt+1; the local error bound from optimal trajectory is defined as epi; =
X (tgs1) — Xpyq, where X7 = K(X(tx) + hP(t, X(t;))) for the Euler LADMM scheme (7) and X}, = K(X(t) +
L P (tg, Ok, X(tg)) + P(tgs1, Ok, X(tr11))]) for the Trapezoid LADMM scheme (15), non-linear transformation K(-) =
(Fr(-);G4(-);I()), and || - || represents the vector ¢>-norm.



The Error Bound of Our Euler LADMM scheme: We start from Euler LADMM scheme (7) and consider local error as
follows:

lertill = [|X (tev1) — Aiqll
_ ||IC(X(tk) +/ o P(t,@,X(t))dt) flC(X(tk) +hP(tk,®k,X(tk))>||
®) - (A5)
<)+ [ PO, - (X(t) + HP(0, O X (0]

= P(t,0, X(t))dt — hP(tr, Ok, X (tr))]

(b)
where < holds because F(-) and G,(-) are non-expansive mappings, and the rest of the equation holds due to [I, Theorem
12.2]. Moreover, let us estimate the local error bound:

fewanll =1 [ [0 - Fwo]an = [ R+ - ) - at = 1R EG G0 A6)

where 0 < £ < 1, € (tg,tg+1), and the second equation holds due to the Mean Value Theorem, and the rest of the equation
holds due to [l Theorem 12.2]. Set Q1 = maxy,<i<7 || X (t)]], lex+1]l < 2Q1h?, that is, the local error bound is O(h?).
Next, the global error bound of the Euler LADMM scheme (7) is:

lers1ll = X (trt1) — Xieta
tht1 tht1 tht1 tht1
< \|ek+/ P(t,@,X(t))dt—/ P(tk,ek,)c(tk))dH/ P(tk,GkJ((tk))dt—/ P(ty, O, Xp)dt|
t tr t t
K - k k K
— llex +eps + / [P (14, O, X (1)) — P(t, O, X)) d|
tr

1 tht1
< llwll+ 5 @b+ [ P10, O, X(0) ~ Pt B0, )]
23

(A7)
where the first inequality holds due to non-expansive mappings Fy(-) and G,(-) and [I, Theorem 12.2].

The functions f and g are Ly-smooth and L,-smooth respectively, so ||V f(x1) — Vf(x2)|| < Lf||x1 —x2|| and ||Vg(y1) —
Vg(y2)|l < Lglly1—y2]|- In such case, we can omit z; and £ and just use the gradients of the functions f and g. In addition, F,
and Gy, are Lipschitz-continuous with respect to x and y, respectively, and thus P(-) with respect to X (t) satisfies the Lipschitz
continuous condition, i.e., there is a constant L; > max{L, L,} such that |P(¢,©,X;) — P(¢,0, X2)|| < L1||X1 — A>||.

Especially, when f or g is £;-norm, from our analysis in the main paper, there exists a constant Ly, ~such that ||V f,, (x1) —
Vi (x2)|l < Ly, |lx1 — x2|| as well as g. Thus there is always a constant Ly such that P(-) satisfies ||[P(¢,©,X1) —

P(t,© X2)|| < Lo||Xy — Xzl at discontinuous points, then ||P(t,0,X1) — P(¢,0,X)| < L||X; — A%|| holds, where
L= max{Ll, Lo}. In practice, our experiments also verify that our networks work on El-norm problem models. Plugging this
Lipschitz continuous condition into yields that:

1
leksill < (1+hL) flexl + 5 Qih°

1 1
o 2 - 2 - 2
= (14 hL) |lexall + (1 +hL)5Q1h* + 5@k AS)

IA

IN

1
(L+ ALY leo|| + [(1+ L)% + (1 + RL)F 1 4o +1] §Q1h2.
More generally,

Q1h?
2hL

k
lexll < (1+RL)* leoll + [ Y (1 + hL)’ Q1h2 < (14 hL)* |eol + [(A+hL)F —1], (k=1,2,---). (A9)
7=0

Due to hL > 0, then "t > 1+ hL, e*"L > (1 + hL)¥, the global error bound of the Euler LADMM scheme (7) from the
optimal trajectory is:

khL Q1h2 khL (T—to)L Q1h2 (T—to)L _ A (A.10)
lewll < 55 fleo| + S1 [ — 1] flew < T o]l + S [e 1] £ o). -



The Error Bound of Our Implicit Trapezoid LADMM Scheme: About implicit Trapezoid LADMM scheme (15), we
consider its local error bound analysis.

lewsall = ([ (tet1) — Xl

= ||K(X (tx) +/ v P(t,0, X(t))dt) — K(X(tr) + g [P(tx, Ok, X(tr)) + Ptrs1, Ok, X(trs1))]) |

ty

?wwm+/w“wu&xmmwwww—hwmmmxw»+mmﬂﬁhﬂmﬂmn

. 2 (A11)
tht1 t—t t—t
= {P(t, 0,X(t)) — [k—HP(tk, O, X(tr)) + 7kP(tk+1, Ok, X(tk+1))} } dt||
te by — trt1 tey1 — tk
tht1

= ) [P(t,0,X(t) — Pu(t)] di]

(b)
where < holds because Ff(-) and G4(-) are non-expansive mappings and so does (), P is the two-point interpolation
polynomial of P(¢,0, X (¢)), and the other equations hold due to the same reason as in [1]. From the remainder term of
interpolation, we obtain

tht1
llers1ll = |l / *P (tr + ER)(t — tr)(t — teya)de]|

. b1
= ||P(tk+§h)/ 2|(t—tk)(t—tk+1)dt|| (A.12)
ty
h3 ..
- 1"y L3
=1 Eberen =1 - L x0 en) <

where 0 < ¢ < 1, Qo = maxy,<;<7 | X (t)||, and X3 is the third derivative of X (t). Therefore, the local error bound of the
implicit Trapezoid LADMM scheme is O(h?). Next, the global error bound of the implicit Trapezoid LADMM scheme (15) is:

ekl = [ X (trt1) — Xeprl]

(b) trta h
< HX(tk) + / P(t, o, X(t))dt — {Xk + 5 (P(tk, O, Xk) + P(tk+1, O, Xk+1)) ||
ty
1 . bttt t—t (A.13)
gkm+—@M+/ |2 P (t, Op, X (1)) + —————P(tps1, Ok, X(trs1))
12 t te — tht1 thy1 — tk

t—t t—t
— L P, Ok, X)) — ———P(ti1, O, Xiyr)||dt

tr — tk+1 tk+1 —ty

(b)
where < holds because F(-) and G4(-) are non-expansive mappings, and the last inequality holds due to the same reason as
in [1]. Due to |A=%+1| <1, we can get ||—2+L(P(t,0, X}) — P(t,0, X))|| < L||X; — X| similarly. Thus,

th—th+1 te—tk+1
hL hL
fewsall < (145 ) lel + "l + F5Qut (A14)
Then, setting 1 — %&£ > 0, we have
AL 11,
< 2 ————=Q2h
mﬂﬂji%km+@7%ﬂﬁ2
14 " ERIAY 14 hL 11 A.15)
2 2 2 3
<| —z leoll + — | Tt 1 (IJLL)EQQ}L.
2 2 2 2
More generally,
k k
14 M Q1 | (1+ 1
< 2 2 -1 k=1,2,---). A.16
Hek”— (1_h2];> H€0||+12]’LL 1_% ( ) 4y ) ( )
1 1452\ F ki T—to)L T—to)L
We set v = ;- — 1, so - hL = ( ) =1+ ) (1 + 1)I—to)ke < o(T—to)L Then, the global error
bound of implicit Trapezoid LADMM sche?ﬁe (15) from the optlmal trajectory can be estimated as follows:
el < eT0E e + L2 [orwiot) £ 0012, (k=1,2,--.). (A1)



We finish the proof. O

Accelerated unfolded Trapezoid LADMM scheme. Following the idea of the Trapezoid LADMM scheme (15), we
intuitively design the accelerated unfolded Trapezoid LADMM scheme as follows:

X = Xk + W(Xk — Xk_l),

- h2 By, .
Xg+1 = ]:f(xk + m(Fk(xk) + Fk(xk+1)))7
- 1
Y =Yk + 3 (Yk — Yk—1)s

e+ 1 (A.18)

) .
Vi1 = Gg (T + W(Gk(ﬁ) + Gr(yrt1))),
~ Br
A=A Ak — Ap_1),
k kTt ﬁk+h( k k—1)
3 h? By,

Akt1 = Ap + ﬂk+h( Xpt1 + Yet1 — b)

Similarly, since the accelerated Trapezoid LADMM scheme (A.T8) is implicit, we also give an explicit version through the
prediction-correction strategy in Algorithm 1 in the main paper.

B. CONVERGENCE ANALYSIS OF OUR TRAPEZOID LADMM SCHEME

In this section, we give the convergence analysis of our non-accelerated explicit Trapezoid LADMM scheme. Firstly, we
introduce some definitions and assumptions. Secondly, we give Lemma in turn as an assistant to the proof of our
Theorem Thirdly, we prove the convergence of implicit Trapezoid LADMM scheme, i.e., Theorem [B.1] And then we
analyze the convergence of our explicit scheme. Finally, we analyze the convergence rate of our Trapezoid LADMM schemes.
Our proofs in this section refer to [2].

We introduce the variational inequality VI(Q, F,d) := ¥(u) — J(u*) + (w — w*, F*(w*)) > 0, Vw € Q, w* € Q" as a
convergence criterion, where u = (x,y)",w = (x,y, ~A) |, F*(w) = (ATA, A\, Ax+y—b) T, 9(u) = f(x) +g(y), and Q*
is the solution set of Problem (2). We define a matrix Dy, = %I— %’“W,IA The convergence of the Trapezoid LADMM scheme
necessitates the positive semi-definiteness of the matrix Dy, and thus we also define the set S(e) = {(W, 8, 3,1, h)||W —A|r <
e,D>=0,3,0,n,h >0} as a limitation, where || - ||z is Frobenius norm. According to these definitions and assumptions, we
give Lemma |B.1 in turn as an assistant to the proof of our Theorem [B.1

Lemma B.1. Let the sequence {wy = (Xi,yr, —Ak)} be generated by implicit Trapezoid LADMM scheme (15), then we have
the same result as in [2)]:

(Ak+1 — A6, Yk — Yit1) > 0. (B.19)
Lemma B.2. Let {wy = (Xi, Yk, —Ax) ' } be the sequence generated by the implicit Trapezoid LADMM scheme (15), then we
have
I(u) — I(upt1) + (W — wig1) | [Fr(wit1) + Gr(ye — Yis1) + He(wip1 — wi)] >0 (B.20)
where Fi,(w)= (W[ A X\ Ax+y —b)T, Gi(y) = (BsW/y,Bcy,0)", and Hy, is defined as:
D, 0 0
H; = 0 pI O . (B.21)
0 0 I

Note that this conclusion is similar to D-LADMM [2, Lemma 4.1], but our Dy, = 6,1 — %’“W,IA Lemma m indicates
that the quality [|wi — wi11]|7;, can be used to measure how accurate wy; is for being a solution of VI(Q, F, ), where
[wllf = (w, Hw). Since Hy, is positive semi-definite, if |lwi — wiy1(/fy, = 0, we can conclude that Hy (wpy1 — wi) = 0
and Gg(yr — Yi+1) = 0, so for Vw, ¥(u) — H(ug4+1) + (W — wr+1, F*(wr4+1)) > 0 on the condition of W = A, which
means w41 is a solution of VI(Q, F, 1), i.e., the solution of Problem (2). Thus, we consider the bound of ||wy — w113y, in
Lemma [B.3] below.

Lemma B.3. Let the sequence {wy, = (Xi, Yk, —Ak)} be generated by the implicit Trapezoid LADMM scheme (15). Suppose
that, for any point w* € O, there exists suitable parameters © = {Wy,, 0x, i, Bi }5_, € S(e€) such that:

(w1 — W' Hg(wg — wgy1)) >0, VE>0 (B.22)
where Hy, is given in (B.21), then ||wy|| < oo holds for all k, and we have:

loor, = w*[Ifr, > lwns1 — w"lffr, + llow — wirala, - (B.23)



The conclusion of our Lemma is similar to D-LADMM [2, Lemma 4.2]. Lemma shows that there exist proper
learnable parameters that make wy, strictly contractive with respect to the solution set *, which plays a key role in the
convergence analysis below.

Theorem B.1 (Convergence of implicit Trapezoid LADMM scheme). Let the sequence {wy, = (Xp,Yr, —Ar) ' } be generated
by the implicit Trapezoid LADMM scheme (15), then there exists ® € S(e) such that {wy} converges to a solution w* of
Problem (2).

From the proof of our Theorem [B.I] we know that our implicit Trapezoid LADMM scheme (15) converges to the solution of
Problem (2). And according to our conference version [3, Eq. (9)], our explicit Trapezoid LADMM scheme, i.e., Case 1 in
Algorithm 1, converges to implicit Trapezoid LADMM scheme when ¢ is large enough. Thus our explicit Trapezoid LADMM
scheme achieves convergence. To further prove the convergence rate of the explicit Trapezoid LADMM scheme, we give
Theorem [B.2

Theorem B.2 (Convergence Rate of the explicit Trapezoid LADMM scheme). Let the sequence {wi = (Xi, Yk, —Ax) ' }
be generated by Case 1 in Algorithm 1 (non-accelerated explicit Trapezoid LADMM scheme). Suppose that there exist
(A, 0%, n*, 8*) and Ky > 0 such that for any k > K, the similar EBC in [2)] holds. Then there exist suitable parameters
© = {Wy, 0k, i, B}, € S(e) such that:

.92 . 2
distyy, ,, (Wk+1,$Y7) <y distyy, (Wi, Q7) (B.24)
where disty;(w, ") = ming-co- |w — w* ||} and 7 is a positive constant smaller than 1.

The conclusion of our Theorem is similiar to [2]. D-LADMM can find appropriate parameters to construct a solution that
is closer to 2* than the solution produced by fixed parameters at each iteration. Hence, from our Theorem it is entirely
possible for the proposed implicit Trapezoid LADMM scheme to achieve the similar linear convergence rate as D-LADMM [2|
Theorem 3], which will be also confirmed in the experiments.

L. Proof of Lemma [B.]|

Proof. We know that 3} Eq. (9)] converges to implicit Trapezoid LADMM scheme. Thus, we only needs to prove the convergence
of implicit Trapezoid LADMM scheme (15). Without loss of generality, we assume h = 1 and similar results can be obtained
for other values of h. About y-subproblem in (15), by the proximal operator Prox s, (z) = arg miny{%kHy —z|? +9(y)}
w.r.t. g, it can be written as: ’

. B 1 (1 A
argmin  g(y) + 7y = ye+ — |5 (v +yier) = b+ Axp + 0] [P (B.25)
y 4 M |2 Br
By deriving the optimality conditions of the (B.25)), we have
B Br [1 A
9(y) = 9(yrs1) + <y ~ Vit o (V1 = V) + o |5 (Vk + Yie1) — b+ Axp + 25| ) > 0. (B.26)
2 2np |2 Br
By setting 1, = % and combining Ax41 = Ap + Bk (Axk+1 + ¥Vi+1 — b), we yield that
9(y) = 9(Yk+1) £ (¥ = Yit1, Akt1) > 0,Vy € R™. (B.27)
Obviously, analogous to (B.27), for y; € R™, we have
9(¥) = 9(y&) +{y = yr, M) = 0,y € R™. (B.28)
Setting y =y, and y = yx41 in (B.27) and (B.28), respectively, and combining and (B.28), we can get
(Ak+1 — Aoy Y& — Yit1) > 0. (B.29)
We finish the proof.
O
1. Proof of Lemma
Proof. Similarly, we take h = 1 as an example and define the proximal operator w.r.t f as Proxse, (z) = arg minx{%’“Hx —
z||?> + f(x)}. The x-subproblem in the implicit Trapezoid LADMM scheme (15) can be written as:
. 0 1 1
Xjk+1 = argmin {f(X) + §k||X — x5+ %W; (e + 5k(§A(Xk +Xp11) +y& — b)) ||2} . (B.30)



By deriving the optimality conditions of (B.30), we have
1
f(x) — f(Xpt1) + <X — Xpor1, O (Xp41 — X)) + W (Ap + ﬂk(§A(Xk + Xpt1) + Vi — b))> > 0. (B.31)
Combining Ap11 = A, + Br (AxXp41 + yri1 — b) yields that:

f(x) = f(xp41) + <X — Xpop1, O (Xp41 — X)) + W <)\k+1 + Br(Ye — Yi+1) + %A(Xk - Xk:+1)>> >0. (B.32)

From the A-subproblem in the implicit Trapezoid LADMM scheme (15), we can see

1
@(Alﬁrl — k) — (AXpy1 + Yiy1 —b) =0. (B.33)
In summary, combining (B.32)), (B.33) and (B.27), we can get
X — Xg+1
J(u) —d(upr1) + | y—yrt1 | o
A -
. hH . (B.34)
WAkt BrW (Yk — Yi+1) Dy (Xk+1 — X)
Akt1 + Br(Yr — Yi+1) + Blk(YkH - V&) >0,YVw € Q.
(AXpy1 + Yit1 — b) 0 7-(Ak = A1)

Using the notations of w, Fi(w), Gi(y) and Hy, we can obtain the assertion (B.20) immediately. Note that our D; =
01— Z2W]A.

O
III. Proof of Lemma [B.3]
Proof. Please see D-LADMM [2, Lemma 4.2]. O
IV. Proof of Theorem [B.]|
Proof. From the Lemma given w* € ¥, there exists proper © = {Wy, 0k, nk, B}, such that:
S o~ il <3 ook — w0, — lowgsn — B, < oo — I + 3 [loner — @I ®39)
k=0 k=0 k=0

This conclusion is the same as D-LADMM too. If we define some large enough (8*,n*, 5*) and let Wj, — A, 0, — 6*, B — 5*
following Section B.3 in D-LADMM, then ;7 , ’||wk+1 - w*||fHk+1_Hk)‘ < 0o and further Y7 [lwp — w1y, < .
Thus, we know that the sequence {wy,} is bounded and there exists a subsequence of wy, converges to wu,. Then following [2|

Theorem 1], we can obtain ¥(u) — 9(Us) + (W — Weo, F* (W) > 0 and wy, — wee as k — oo on the condition of Hy, > 0,
where wy, € Q2*. Thus, our implicit Trapezoid LADMM scheme (15) converges to the solution of Problem (2). O

V. Proof of Theorem [B.2]

Proof. Without loss of generality, we assume that there exists some {Wy, 0%, i, Bx} to make the wy1 # wg. Otherwise we
can perturb (W, g, 0, B) to make wyq1 # wg. Due to ||wgy1 — "“’k”%{k # 0, there exists ki > 0 such that:

diSt%Ik (wk+17 Q*) < Iik||wk+1 — wk||%{k. (B36)

Following (B:23), we have
distf{k (W41, < dist%k (wi, %) — [|wr — Wit ||, - (B.37)

Combing the above inequality with (B.36), we get:

. * 1 - - *
distyy, (We+1, Q%) < (1 + m) (distiy, (wi, Q)] . (B.38)
According to [2, Theorem 2], we obtain:
) . 1. .
distyy, ,, (Wks1,0°) < (14 @)dzstﬁk(ukﬂ,n ) (B.39)

where ¢ > 0 is a constant and «;; > 1. Combining (B:38) and (B.39), we can also obtain the monotonically decreasing property:
distyy, ,, (Wki1, Q) < distgy, (wi, ). (B.40)



TABLE C.1
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH
SALT-AND-PEPPER NOISE RATE 5%. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED IN RED, BLUE, AND COLORS,
RESPECTIVELY.

Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time(s)
D-LADMM (K =15 [2]) 34.68 33.69 29.05 3346 3257 3388 3591 3326 27.17 34.88 3519 38.62 33.53 0.2733

ELADMM (K =15, Ours) 3492 3355 29.86 33,57 3258 33.61 35.85 33.57 34.96 3595 38.88 33.75 0.2741
A-ELADMM (K =15, Ours) 34.83 3524 29.59 3529 3641 3639 3841 3462 27.18 36.26 39.00 41.65 3540 0.2868
TLADMM (K =8, Ours) 36.69 37.35 35.66  26.66 36.91 0.2868
TLADMM (K =15, Ours) 36.89 36.30 3032 36.79 37.18 39.81 36.00 26.84 37.14 40.14  42.07 36.39 0.5601
A-TLADMM (K =8, Ours) 35.66 30.77 36.06 3629 37.07 3839 28.24 3894 4130 36.01 0.2899

A-TLADMM (K =15, Ours) 37.25 35.81 30.81 3691 3739 3793 39.80 36.57 2845 37.47 40.12 4222 36.72 0.5635

Then, there are two cases to be discussed.
Case 1: When k > K, under the similar EBC condition: dist}y. (@, 2*) < k[|& — wy|/}- as in [2], where & is a positive
constant and H* is given in (B.21) by setting (Wy, i, nx, Bk) as (A, 6%, n*, 5*), we can get:

distgy, ., (Wrt1, V) < Frllwrr1 — wi g, - (B.41)

Case 2: When k£ < K, from the convergence of our Trapezoid LADMM scheme in Theorem and the inequality
) K
B.23)), we know that dzstHkH(wkH’ 2*) < ||wo — w*||%{0 + 302 ‘||wk+1 — w*H(2Hk+1_Hk)

< 00. Hence there exists one

constant C' > 0 such that distf{kﬂ(wkﬂ, Q%) < C. Since ||wy — wi1lf, # 0. there exists one constant € > 0 such that
|wr — wit1llf;, > e We immediately have:

) N c
dzst%kﬂ(wkH,Q ) < ?||(U}g+]_ — w;g||%lk. (B.42)

Letting xk = max{%, 1} and combining 1} and 1i we get
—1
dzstf{k+l(wk+1,§2 ) < (1 + n) distyy, (wp, ).

To sum up, dist%{k (w, %) converges to zero linearly. Furthermore, combining [3, Eq. (9)], our explicit Trapezoid LADMM,
i.e., Case 1 in Algorithm 1, converges to implicit Trapezoid LADMM scheme (15) when ¢ is large enough. Thus, there exists
a set of learnable parameters that helps Algorithm 1 achieve the same linear convergence, which will be confirmed in the
experiments. We finish the proof.

O

C. MORE EXPERIMENTAL DETAILS AND RESULTS

In this section, we display the detailed execution of the experiments and more experimental results. All methods are
implemented on the NVIDIA GeForce RTX 2080Ti and PyTorch platform.

L. Simulation Experiments

In the simulation experiments, we set m = 250 and d = 500. For training, we set the batch size to 16 and adopt the stochastic
gradient descent (SGD) [4] algorithm with a learning rate /r = 0.0001 to train all the networks. The numbers of training
and testing samples are set to 10,000 and 1,000, respectively. Each entry in the matrix A is sampled from i.i.d. Gaussian
distribution, namely A; ; ~ N'(0,1/m), and then we normalize its columns so that they have ¢2-norm units. The generation of
x and y is similar to [2]. For a fair comparison, the matrix A is the same in all the methods.

II. Natural Image Denoising

Experiment Setting. In this experiment, dictionary A € R256%512 j5 obtained by clean images [5]]. b in the training set
contains 10,000 noisy image blocks with patch size 16 x 16 for LADMM-type methods. We adopt Adam optimizer [6] with
a learning rate [r = 0.0002 to train all the methods with a batch size of 16 and we set the number of training epoch to 20
for D-LADMM, our (A-)ELADMM and our (A-)TLADMM. Note that we use Lossy as training loss function in all of our
networks. The test dataset contains 1,024 image blocks for LADMM-type methods and “Time” in Table [C.T]- [C.3| refers to the
GPU time used to restore all test image blocks.

Additional Results. We further show the denoising performance of individual images in dataset WBZG at different noise
ratios, and the experimental results are shown in Table [C.I] - [C.3] which all demonstrate the advantages of our algorithms.



TABLE C.2
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH
SALT-AND-PEPPER NOISE RATE 10%.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time (s)
D-LADMM (K =15, [2]) 32.12 31.16 2636 31.63 3144 3253 3523 31.06 24.75 34.66 3482 37.82 31.97 0.2756
D-LADMM (K =30) 30.55 3023 25.67 30.78 30.11 3146 3450 30.12 23.24 32.12 3413 35.62 30.71 0.5685
ELADMM (K =15, Ours) 32.07 31.38 2645 3149 31.68 3237 3567 30.88 2396 34.20 3432 3792 31.87 0.2748
TLADMM (K =8, Ours) 24.58 34.13 36.43  39.30 0.2701
TLADMM (K =15, Ours) 3446 3340 2826 33.65 3430 3458 39.33 3324 34.92 37.06 40.27 34.04 0.5031
A-ELADMM (K =15, Ours) 3299 32.89 2792 3282 3353 3389 3749 3256 25.39 3332 0.2905

A-TLADMM (K =15, Ours) 34.38 33.47 2838 3359 3486 3468 39.63 3331 2583 34.18 37.88  40.32 3421 0.5621

TABLE C.3
COMPARISON OF THE DENOISING RESULTS IN TERMS OF PSNR (DB) ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SETS WITH
SALT-AND-PEPPER NOISE RATE 15%.

Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time(s)

D-LADMM (K =15 [2]) 29.11 2943 2336 2955 2891 3093 3272 2935 20.28 31.84 3426 36.71 29.70 0.2754
ELADMM (K =15, Ours) 29.63 29.54 23.66 2951 2877 30.85 3272 29.82 20.61 31.78 3485 36.64 29.86 0.2745

A-ELADMM (K =15, Ours) 29.51 30.56 2492 3029 3092 31.61 3348 2991 31.72 3583  37.64 30.79 0.2749
TLADMM (K =38, Ours) 29.83 30.52 24.14 29.62 2954 3278 34.13 22.25 33.14 31.00 0.2701
TLADMM (K =15, Ours) 31.56 32.26 30.86  22.28 32.87 36.09  38.69 0.5022
A-TLADMM (K =8, Ours) 31.33 26.75  31.46 3297 3482 3136 24.18 32.59 35.54 3858 3191 0.2711
A-TLADMM (K =15, Ours) 31.78 31.59 26.58 3197 32.88 33.09 35.16 31.65 24.17 36.72 39.21 3230 0.5031

Comparison with MPRNet [7]: We tested the performance of MPRNet on our salt-and-pepper denoising task, and the
experimental results are shown in Table [C.4] It can be seen that the performance of MPRNet is not as good as our algorithms.
This is mainly because the test dataset contains only gray-scale images, while MPRNet requires the input in RGB color space.
Using gray-scale images as input to MPRNet will increase interference information. Thus, we conduct the image denoising task
on a color FFHQ 256 x256-1k dataset [8]]. We add the same salt-and-pepper noise on the FFHQ 256 x256-1k dataset for our
TLADMM, A-TLADMM, and MPRNet [7]] on this denoising task and denoising results are shown in Table @ where we
implemented the source code of MPRNet and D-LADMM as baselines.

TABLE C.4
COMPARISON OF THE PSNR (DB) RESULTS IN THE NATURAL IMAGE DENOISING TASK ON 12 IMAGES IN THE WATERLOO BRAGZONE GREYSCALE SET AT
SALT-AND-PEPPER NOISE RATE 15%.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave.

MPRNet [7] 2048 22.05 1935 19.89 20.89 19.10 21.76 22.77 18.46 22.26 2348 22.58 21.09
ELADMM 29.63 29.54 23.66 2951 2877 30.85 3272 29.82  20.61 31.78 3485 36.64 29.86

A-ELADMM 29.51 30.56 24.92 3029 3092 31.61 3348 2991 3172 3583 37.64 30.79
TLADMM 31.56 32.26 30.86 2228 3287 3609 38.69
A-TLADMM 3178 3159 2658 3197 32.88 33.09 3516 31.65 24.17 3672 3921 3230
TABLE C.5
COMPARISON OF THE PSNR AND SSIM RESULTS ON THE COLOR FFHQ 256 X 256-1K DATASET [8] AT SALT-AND-PEPPER NOISE RATIOS 5%, 10% AND
15%.
. 5% 10% 15% o
Algorithms PSNR SSIM | PSNR _ SSIM | PSNR _ SsimM | 'rarams (Millions)
MPRNet [7] 2703 07870 | 2427 07182 | 2265 06710 20.1
D-LADMM [2] 3437 09118 | 3201 08489 | 2877  0.7591 2.09
TLADMM (Ours) 3645 09204 | 3325  0.8801 | 3035  0.8132 1.97
A-TLADMM (Ours) | 37.02 09258 | 3361  0.8886 | 29.62  0.7942 1.97

From Table [C.5] in the case of sparse salt-and-pepper noise, our methods outperform MPRNet at different noise
ratios, while MPRNet [7] is a proven efficiency method on the smartphone image denoising datasets such as SIDD
https://www.eecs.yorku.ca/ kamel/sidd/dataset.php, but it is a black-box model. In contrast, our algorithms are inspired by
traditional optimization, are white-box, provable, and have stronger interpretability like the work [2]. Moreover, the number of
parameters of our methods is much less than that of MPRNet, which makes them more adaptable to small-scale datasets.

Ablation study on the FFHQ 256x256-1k dataset: For more robust and concrete evidence of the effectiveness, we also
conduct an ablation study on the FFHQ 256 x 256-1k dataset to assess how much our loss Losss and trapezoid structure each
contribute, and the results are shown in Table [C.6] It can be found that only changing the loss function can still maintain the


https://www.eecs.yorku.ca/~kamel/sidd/dataset.php

performance of D-LADMM, which indicates that taking the objective function as the training loss can impose strict constraints
on the training procedure and it can be regarded as a substitute for no ground truth. Furthermore, we changed the network
structure to our trapezoid structure, and this improvement (1.3dB) is far more significant than above. It is also verified that the
trapezoid structure plays a more important role than our loss function.

TABLE C.6
COMPARISON OF DENOISING RESULTS PSNR WITH DIFFERENT K ON THE FFHQ 256 X 256-1K DATASET AT 10% SALT-AND-PEPPER NOISE.

PSNR\ Layers

K=9 K=12 K=15 K =18 Ave.

Algorithms
Original D-LADMM [2] | 31.10  32.07 32.01 31.55 31.68
D-LADMM, our Lossz | 31.39  32.52 32.30 30.82 31.76
TLADMM, our Lossa | 32.63  33.78 33.25 32.81 33.12

III. Natural Image Inpainting

Experiment Setting. We divide the images in the BSDS500 dataset [9] into image blocks and randomly select N = 50, 000
and N = 1,000 8 x 8 image patches for training and validation, respectively. We implement other algorithms by ourselves and
implement our methods based on the source code of LFISTA [10]]. The training batch size is set to 256 and the SGD optimizer
is used. The input to our network is triplets {b;, M;,x*}¥ | of the corrupt train patches by, their corresponding mask M, and
the solutions x* is generated by 300 iterations of the FISTA on the corrupt signals. For Problem (25), the specific structure of
the k-th layer of our TLADMM is as follows:

h
Xp 1 = Fp(xx + %Fk(xk))a

hB
X1 = F(xp + 5 20, [Fi(xx) + Fk(xk+1)] ),

B h A }
Vi1 = 1 Jrkﬂk (yr — %(Mkaﬁ'l +yr—b+ ?:))7 (C43)
G " (oMD b+ M) 1 (MD 0 pg

il = T g (Yk_ﬂ(( Xk+1 + Y& — +E)+( X1 +Ypp1 — b+ ﬂk)))
Akt1 = A + A6k (Ye+1 + MDx41 — b)

where Fj,(x) = — (MW;)' (MDx+y, —b+ 2‘—2), W, is a learnable matrix, initialized to D, A = MDD, F;(-) = ST(-, 71),

and G,4(-) = 14[3];5 Z(-). Note that the y-update generalizes its closed solution (i.e., Yx+1 = %( — (MDxg41 — b+ %)))
Furthermore, by adding extrapolation steps, we can obtain the network structure of our A-TLADMM:

X = Xg + ﬁ(xk — Xp-1),
~ h2 ~
X2+1 = ff(xk + %Fk(xk)),
~ h2 ~
Xft+1 = ]:f(Xk + % [Fk(xk) + Fk(X2+1)] )v

Yk =y;c+#(y _Yk 1),
Pkt (C.44)

y2+1 = 1+5k (Yk 1+hm (MDxj41 +yr —b+ ))
Ye+1 = pﬂrﬁ(}’k W((MDXk+1 +¥r — b + Ak) + (MDXk+1 + y2+1 —-b+ %)))7
A=A + Bfﬁ()\k = Ak—1),

~ 2
Akt1 = Ap + % (Y41 + MDxy 11 —b).

Additional Results. More recovered results of some methods for the image inpainting task with 50% missing pixels are
shown in Fig. [C.2] - All of these demonstrate the strengths of our algorithms.

1V. Compressive Sensing for Natural Images

In this subsection, we describe some experimental details about our (A-)ELADMM-Net and (A-)TLADMM-Net. To reduce
complexity, we avoided the matrix inversions due to closed solutions in the CS model by the following derivation. About x
update, our networks actually solve the x-subproblem as follows:

o1 X A
X1 = argm}:n{iﬂc — <I>XH2 + %Hx —yi+ 5—:”2} (C.45)



We linearize the quadratic terms in (C.45) at x;, by the Taylor’s formula and add a proximal term §|x — x;||?, thus (C.45) can
be approximated as:

1 A
xp+1 = argmin{ g |x — x, — @7 (¢ — Bxx) + Fi(xr —yi + F:)HQ}' (C.46)

Thus, we can obtain the k-th layer of our TLADMM-Net:

A
x2+1 =®"(c— ®xp) + x5 — hﬁk(xk —yi + F:)7
h Bk Ak A

Xpp1 = @7 (c— Dxp) + x5 — 7§k (xk —yi + 5*: + X1 — Yk + 57:)’

h Ak c47
Vo1 = G (yr — — (Xes1 —yi + ), (CA47)

Mk k

h )\k )\k
Vi1 = Gy (yr — %(Xk+1 —-¥r+ 3. + X1 — Yoqr + E)),
Ak}-‘rl = Ak + h/ﬁk (Xk?-‘rl — Yk+1)

where G,(-) = %(ST(T('),TQ)), T is the inverse transformation of 7, and Fi(-) = ®T(c — ®x;) + (-). Note that the
transformation 7 is the same as in [[L1]]. Similarly, the structure of our ELADMM-Net can be obtained. In our experiments, we
also initialize [ as a small value to allow us to find the next point on a larger scale. From to (C.47), we successfully
avoid the matrix inversions about x-update, which contributes to reducing reconstruction time with little loss of accuracy.
Furthermore, by adding the extrapolation steps for (x,y, A), the network structure of A-TLADMM-Net can be also obtained.

Calculation of the parameter quantities of our (A-)TLADMM-Net and (A-)ELADMM-Net: for example, under CS ratio
~v = 30%, the number of parameters of our ELADMM-Net is (32x32x3x3x2+32x3x3x2+3)x10+327x33x33 = 546,213,
our A-ELADMM-Net is 546,243, our TLADMM-Net is (32 x32x3x3x24+32x3x3x2+7)x 104327 x 33 x 33 = 546, 253,
our A-TLADMM-Net is 546,283, while the number of parameters of ISTA-Net™™ is 760,220, COAST is 1,122, 056, and
DPC-DUN is about 1, 100, 000.

Experiment Setting. We set the size of the image block to 33 x 33. Then, for a given CS ratio, the corresponding measurement
matrix ® is constructed by generating a random Gaussian matrix and then orthogonalizing its rows, i.e., ®® " = I. We initialize
xo9 = ® ' c as well as y(. For training, we use the Adam optimizer and train all the methods to 400 epochs with batch size 64.
We set a learning rate [r = 0.0001 to train our networks for a fair comparison. More comparison results are shown in Table

An Ablation Experiment for Loss Functions. In this compressive sensing task, we actually have verified the performance
of some compared algorithms trained by our Loss; as shown in Table It can be seen that MAC-Net and DPC-DUN
trained with our Loss; perform clearly worse than their original versions, respectively. ISTA-Net™ ™ and COAST with our
Loss; perform relatively well, but they can only achieve similar levels as their original methods. Based on this analysis, we
compared the source code results of the compared algorithms in our main paper.

TABLE C.7
COMPARISON OF NATURAL IMAGE COMPRESSIVE SENSING RESULTS IN TERMS OF PSNR (DB) WITH DIFFERENT LOSS FUNCTIONS AT SAMPLED RATIOS
v =10%, 20%, 30%, 40% AND 50% ON THE TEST DATASETS, BSD68 AND SET11. WE BOLD THE HIGHER PSNR FOR THE SAME NETWORK.

Datasets BSD68 Setl1

Algorithms 10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.
Original MAC-Net (ECCV2020, [12]) 2570 2823 30.10 31.89 3337 2986 | 2792 31.54 3387 36.18 37.76 3345
MAC-Net with our Lossi 2535 27.88 29.85 31.54 33.00 29.52 | 27.35 3098 3330 3577 3728 3294

" Original ISTA-Net*+ (ICME2021, [13]) | 2625 29.00 31.10 33.00 3485 30.84 | 28.34 3233 3486 3694 3873 3424
ISTA-Nett+ with our Lossi 26.09 2893 31.12 33.08 3498 30.84 | 27.82 32,11 3492 37.16 39.05 34.21

* Original COAST (TIP2021, [14]) | : 2628  29.00 3210 3293 3474 3101 | 28.69 3253 3504 37.13 3894 3447
COAST with our Lossy 26.18 2895 3199 3292 3471 3095 | 2821 3227 3489 37.01 3887 3425

" Original DPC-DUN (TIP 2023, [15]) | 26.82 29.66 31.81 33.75 35.68 31.54 | 29.33 3286 3580 37.88 39.79 3513
DPC-DUN with our Lossi 2578 28.59 30.77 32.61 3441 3043 | 27.62 31.17 34.07 36.01 37.89 33.35

V. Compressive Sensing on Speech Data

For speech data, the network structures of our (A-)TLADMM-Net are the same as those in natural image compressive
sensing. Following [24]], we add zero-mean Gaussian noise with standard deviation std = 10~* to the measurements and choose
the CS ratio 25% and 40% for analysis. We use a column orthogonal matrix ® to downsample raw speech data and treat
soft-thresholding parameters as trainable values.

An Ablation Experiment for Loss Functions. In this compressive sensing on speech data experiment, when training the
compared algorithms ISTA-Net*, HSSE and ADMM-DAD, the experimental performance using our Loss; is slightly better
than that of using the original loss, as shown in Table For a fair comparison, all the methods use the Loss; as the loss
function.



TABLE C.8
COMPARISON OF IMAGE COMPRESSIVE SENSING RESULTS IN TERMS OF PSNR (DB) UNDER DIFFERENT SAMPLED RATIOS v = 10%, 20%, 30%, 40% AND
50% ON THE BSD68 AND SET11 DATASETS. AS WE CAN SEE, OUR NETWORKS ACHIEVE MUCH BETTER RESULTS THAN OTHER METHODS IN THE CASES OF
ALL THE SAMPLED RATIOS.

Datasets BSD68 Setl1

Algorithms 10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.
LDAMP (NeurIPS2017, [[16]) 2394 27774 30.28 32,12 32.89 29.39 | 24.71 30.65 33.87 36.03 36.60 32.37
ISTA-Nett (CVPR2018, [L1]) 2524  28.00 30.20 32,10 3393 29.89 | 2657 3085 3374 36.05 38.05 33.05
DPDNN (TPAMI2019, [17]) 2481 27.28 2922 3099 3274 29.01 26.09 29.75 3237 3469 3683 3195
GDN (TCI2019, [18]) 25.19 2795 2988 32.07 34.09 29.84 | 2603 30.16 3295 3525 37.60 32.40
SCSNet (CVPR2019, [19]) 2728 29.01 31.87 33.86 3577 3156 | 2848 3195 34.62 3692 39.01 34.20
DPA-Net (TIP2020, [20]) 25.33 - 29.58 - - - 27.66 - 33.60 - - -
MAC-Net (ECCV2020, [12]]) 25770 2823 30.10 31.89 3337 29.86 | 2792 31.54 33.87 36.18 37.76 33.45
COAST (TT1P2021, [14]) 2628 29.00 32,10 3293 3474 31.01 28.69 3253 3504 37.13 3894 3447
ISTA-NetT1 (ICME2021, [13]) 2625 29.00 31.10 33.00 3485 30.84 | 2834 3233 3486 3694 38.73 3424
GPX-ADMM-Net (EUSIPCO2021, [21]) | 25.30 27.79 2932 3199 3325 2953 | 2746 3136 33.85 36.28 3832 3345
HSSE (TNNLS2022, [22]) 2629 2899  32.01 3275 3475 3096 | 28.69 - 3492  37.04 38.92 -
LGSR (TNNLS2023, [23]) 2633 29.78 3230 3432 3633 31.81 28.24 - 3493  37.10 38.99 -
DPC-DUN (TIP 2023, [15]) 26.82 29.66 31.81 33.75 35.68 3154 | 29.33 37.88 39.79 35.13
ELADMM-Net (K =20, Ours) 27.01 2953 32.01 33.89 3582 31.65 | 2834 3251 3472 3732 3871 3432
A-ELADMM-Net (K =10, Ours) 2733 29.81 3240 34.10 36.22 3197 | 2854 32770 3495 3756 38.89 3453
TLADMM-Net (K =10, Ours) 27.76 2895 3281 3573

A-TLADMM-Net (K =10, Ours) 30.60 32.82 3490 3695 32.59 33.02 35.87 38.24 4042 3535
A-TLADMM-Net (K =20, Ours) 2794  30.86 33.21 3536 3741 3296 | 2943 3335 36.14 38.61 40.89 35.68

TABLE C.9

COMPARISON OF THE TEST MSE RESULTS (x10~2 AND x10~%) ON THE TIMIT AND SPEECHCOMMANDS DATASETS WITH DIFFERENT LOSS FUNCTIONS
AT CS RATIOS v = 25%, 40%.

Datasets TIMIT SpeechCommands
Algorithms 25% 40% 25% 40%
Original ISTA-NetT [11] 2.245 2.049 0.589 0.474
ISTA-Net™ with our Loss1 2.232 2.029 0.584 0.462
Original HSSE [22] 1.214 0.931 0.698 0.347
HSSE with our Lossy 0.911 0.829 0.476 0.362
Original ADMM-DAD [24] 0.794 0.431 0.254 0.146
ADMM-DAD with our Lossi 0.791 0.424 0.252 0.134

More visual results of the spectrograms are shown in Fig. and the reconstruction examples of the raw speech
samples under v = 40% on dataset TIMIT are provided in another folder in https://github.com/Weixin-An/A-TLADMM-
Net/tree/master/Speech%20CS. All of these verify that our algorithms can distinguish more frequencies than baseline methods.

VI. Compressive Sensing MRI

About CS MRI, the iterations of (A-)ELADMM-Net and (A-)TLADMM-Net can also be derived in the same way. The
sampling mode is used pseudo radial sampling. We evaluate the Structure Similarity Index Measure (SSIM) as follows:
SSIM(xyc,x") = st £ 60 Pece F01),
(M3 e + 3) (0%, 0%+ + ca)
between the network output xy and the ground truth, where pix, and px« represent the mean values of xx and x* respectively;
5,2( x and 6,2(* represent the variances of xx and x* respectively; dx, x~ represents the covariance of xx and x*, and the constant
cs3, cq4 prevents the exception of dividing by O.

An Ablation Experiment for Loss Functions. In this MRI CS experiment, ADMM-Net uses the averaged normalized root
mean square error (NRMSE). For a fair comparison, we replace its loss function with our Loss; and the experimental results
are almost the same, as shown in Table As for ISTA-type methods, we replace their ¢5-norm loss with our Lossi, and
the experimental performance is slightly worse. Thus, we still used their original loss functions to train them.

We also test all the methods at the same time cost and the results are shown in Fig. At relatively high CS ratios, our
A-TLADMM-Net always reconstructs higher quality images than the compared methods. Moreover, our networks still perform
much better than ADMM-Net at the same time cost. Our TLADMM-Net also enjoys better performance than ELADMM-Net. At
relatively low CS ratios, our TLADMM-Net and A-TLADMM-Net are competitive with the reconstruction results of ISTA-Net™.

More visual results are shown in Fig. This experiment verified that the (accelerated) Trapezoid LADMM schemes
are more accurate than the (accelerated) Euler LADMM schemes, which also inspires us to try more accurate numerical
discretizations, such as the linear multi-step discretization, to improve performance on the CS MRI task.
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TABLE C.10
COMPARISON OF TEST PSNR (DB) RESULTS FOR COMPRESSIVE SENSING MRI WITH DIFFERENT LOSS FUNCTIONS.
. CS Ratio v

Algorithms 0% 30%  40%  50%

Original ADMM-Net 3717 3984 4156  43.00

ADMM:-Net with our Loss1 | 37.31 39.92 4155 42.98

Original ISTA-Net [11] 3830 4052 4212 43.60

ISTA-Net with our Loss: 3811 4037 4204 4355

Original ISTA-Net™ [11]] 3873 40.89 4252 44.09

ISTA-Net+ with our Lossi | 3878 4075 4253  44.05
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Fig. C.1. Comparison of test PSNR (dB) results for CS-MRI on the brain dataset at the same time cost.
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Fig. C.2. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Barbara.

Original image Corrupted, 10.6 D-LADMM, 30.91 ELADMM, 30.84 A-ELADMM, 31.86 TLADMM, 31.58 A-TLADMM, 32.86

Fig. C.3. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Boat.
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Fig. C.4. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on House.

Original image Corrupted, 10.9 D-LADMM, 34.31 ELADMM, 3455 A-ELADMM, 31.31 TLADMM, 35.08 A-TLADMM, 32.36

Original image Corrupted, 10.9

Fig. C.6. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Peppers.

Original image Corrupted, 11.2 D-LADMM, 31.14 ELADMM, 31.38 A-ELADMM, 31.34 TLADMM, 31.94 A-TLADMM, 32.28
Fig. C.7. The recovered results (dB) of the methods for image inpainting tasks with 50% missing pixels on Couple.
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Fig. C.8. Comparison of the visual results for the speech CS task at y=40% on TIMIT. From top to bottom, the spectrograms of Ground
Truth, ADMM-DAD [24], ELADMM-Net (Ours), A-ELADMM-Net (Ours), TLADMM-Net (Ours), and A-TLADMM-Net (Ours).
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Fig. C.9. Examples of visual results and PSNR/SSIM of the MRI compressive sensing task on the brain dataset with CS ratio v = 20%. From
top to bottom, the results of Ground Truth, ELADMM-Net (Ours), A-ELADMM-Net (Ours), TLADMM-Net (Ours), and A-TLADMM-Net
(Ours).
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