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Abstract— Many research works have shown that the traditional
alternating direction multiplier methods (ADMMs) can be better
understood by continuous-time differential equations (DEs).
On the other hand, many unfolded algorithms directly inherit
the traditional iterations to build deep networks. Although they
achieve superior practical performance and a faster convergence
rate than traditional counterparts, there is a lack of clear
insight into unfolded network structures. Thus, we attempt
to explore the unfolded linearized ADMM (LADMM) from
the perspective of DEs, and design more efficient unfolded
networks. First, by proposing an unfolded Euler LADMM
scheme and inspired by the trapezoid discretization, we design
a new more accurate Trapezoid LADMM scheme. For the
convenience of implementation, we provide its explicit version via a
prediction–correction strategy. Then, to expand the representation
space of unfolded networks, we design an accelerated variant
of our Euler LADMM scheme, which can be interpreted
as second-order DEs with stronger representation capabilities.
To fully explore this representation space, we designed an
accelerated Trapezoid LADMM scheme. To the best of our
knowledge, this is the first work to explore a comprehensive
connection with theoretical guarantees between unfolded ADMMs
and first- (second-) order DEs. Finally, we instantiate our schemes
as (A-)ELADMM and (A-)TLADMM with the proximal operators,
and (A-)ELADMM-Net and (A-)TLADMM-Net with convolutional
neural networks (CNNs). Extensive inverse problem experiments
show that our Trapezoid LADMM schemes perform better than
well-known methods.

Index Terms— Acceleration, differential equations (DEs),
inverse problems, network structure design, unfolded LADMM
networks.

I. INTRODUCTION

INVERSE problems arise in almost any scientific and engi-
neering applications. In the field of machine learning, inverse

problems [1] generally refer to the use of low-dimensional
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Fig. 1. Comparison of the reconstruction results for natural image CS with
CS ratio γ = 30% on the test datasets, Set11 (left) and BSD68 (right). The
size of the solid circles is proportional to the number of network parameters.
Our methods (i.e., green solid circles) perform well overall, achieving faster
speed, higher image quality, and lower storage costs.

information and prior knowledge to restore higher-dimensional
information, e.g., sparse coding [2], [3], compressive sensing
(CS) [4], [5], and image super-resolution [6], [7]. Formally,
we focus on the following model for a linear inverse problem:

Ax∗
+ y = b (1)

where A ∈ Rm×d , b ∈ Rm , and d > m generally. For example,
given an observation vector b, where A is a dictionary matrix
and y is noise, our goal is to recover an optimal x∗ from b as
accurately as possible. Traditionally, to obtain good estimates of
the ground truth (GT), researchers usually solve the following
model with an equality constraint:

min
x∈Rd ,y∈Rm

f (x) + g(y), s.t. Ax + y = b (2)

where f : Rd
→ R and g : Rm

→ R are closed convex but
possibly nonsmooth. In this article, we focus on the model (2)
with constraint Ax + y = b. For the more complicated case
of Ax + Cy = b when C ̸= τ I, there are some similar
algorithms for solving Problem (2). In the machine learning
community, this general formulation has a broad spectrum
of applications such as norm regularized ill-posed inverse
problems, including but not limited to image denoising [8],
[9], image inpainting [10], and CS [5], [11]. In this article, we
propose novel algorithms that achieve better performance as
shown in Fig. 1.

Recently, diffusion models such as [12], [13], [14], and
[15] have been developed for solving the inverse problems (1),
but they are not based on the model (2). They have good
interpretability and can generalize to different degradation
operators such as [15], but their repeated sampling can lead to
relatively low prediction efficiency. For solving the model (2),
one popular method is the accelerated proximal gradient
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Fig. 2. There are descriptions of the connection between various ADMMs,
some of which also demonstrate the connection between ADMMs and DEs.
More discussion about this figure is in Section II.

(APG) algorithm [16] due to its O(1/K 2) convergence rate,
where K is the number of iterations. The alternating direction
multiplier method (ADMM) is another popular choice [17],
which alternately minimizes an augmented Lagrangian function
in a Gauss–Seidel fashion, followed by an update of the dual
variable. However, ADMM involves the inverses of the matrices,
which leads to its heavy computational complexity. To solve
this problem, the work in [18] linearized the quadratic term of
the augmented Lagrangian function and proposed the linearized
ADMM (LADMM). The Nesterov momentum technology
helps [19] and [20] to design accelerated ADMMs, which
improves the convergence rate to O(1/K 2). Subsequently, the
work in [21] proposed the Jacobian-type ADMM algorithm
with multiple variable blocks to facilitate parallel and dis-
tributed computing. Besides, for solving the large-scale equality
constraint problem (i.e., f (x) = (1/n)

∑n
i=1 fi (x), where the

number of samples n is large), there are some stochastic variants
to reduce the complexities of deterministic ADMMs, including
stochastic ADMM [22], SVRG-ADMM [23], and ASVRG-
ADMM [24]. The connections between these traditional
ADMMs are shown in Fig. 2. However, it is nontrivial for these
traditional ADMMs to choose the values of hyper-parameters
such as penalty parameters in practice and they usually require
hundreds of iterations to converge, which cannot meet the
needs of solving such problems quickly.

End-to-end training inspired recent works [25], [26], [27],
[28] to unfold traditional optimization iterations into hierar-
chical deep neural networks (DNNs), which can learn some
hyper-parameters from the distribution of the data instead of
artificially setting them, called unfolded algorithms or learning-
based optimization, which achieved better interpretability and
performance when solving various inverse problems. Taking the
iterative shrinkage thresholding algorithm (ISTA)-type unfolded
network as an example, the work [29] proved the asymptotic
coupling property of learned ISTA (LISTA) [2] and provided
a rigorous linear convergence analysis, which reduced the
number of learned parameters and improved the quality of
sparse signal recovery. The works such as [30], [31], [32],
and [33] further refined the network structure of LISTA and
theoretical insights into LISTA. As for ADMM-type unfolded
networks, the works such as [11], [34], [35], [36], and [37]
proposed to replace the dictionary matrices with some learnable
weights, or converted the proximal operator to a convolutional
neural network (CNN), which achieved excellent performance

in image restoration. Compared with DNNs, the work [38]
verified that these unfolded algorithms often achieve better
generalization capability, especially on small-scale datasets.
Besides, because they are designed from the perspective of
optimization, it is easier to interpret their principles than DNNs.

On the other hand, theoretical insights into unfolded algo-
rithms become more difficult than traditional optimization
algorithms owing to the introduction of learnable parameters.
Many works such as [29] and [35] mainly added constraints
on the learned parameters to simplify the theory, but it seems
to limit the idea for designing unfolded algorithms, which
prompts researchers to find a more reasonable perspective
for understanding how unfolded networks work. Recently,
by bridging ISTA-type algorithms and DEs, the works in [39]
and [40] have made tentative progress in filling in this gap. For
example, the work [40] converted one iteration of LISTA into
a residual block and then treated it as the Euler discretization
of a first-order differential equation.

Motivations: Nevertheless, for the widely used unfolded
ADMM networks, there is still a lack of theoretical research
from the perspective of DEs. To fill this gap, we need to answer
the following two key questions.

1) Is there a close theoretically guaranteed comprehensive
connection between unfolded ADMMs and numerical
discretizations of the first- or second-order DEs?

2) Can more accurate numerical discretizations of DEs lead
to superior unfolded ADMM networks?

Furthermore, we experimentally found that some existing
ADMM-type unfolded algorithms cannot maintain good perfor-
mance with the nondefault number of network layers. To sum
up, there is an urgent need to design DEs-inspired unfolded
ADMM networks with fewer parameters or layers.

A. Our Contributions
To address the above issues, we build a theoretically

guaranteed comprehensive connection between the unfolded
(A-)LADMM and numerical discretizations of the first- and
second-order DEs. On this basis, we propose new DEs-inspired
unfolded LADMM networks with better theoretical results and
practical performance to solve Problem (2).

The main differences between our preliminary conference
paper [41] and this article are as follows.

1) We briefly review the recent works on accelerated
ADMMs and discuss the connections between tradi-
tional (accelerated) ADMMs and DEs in more detail
in Section II.

2) Based on extrapolation acceleration, we generalize the
DEs-inspired unfolded LADMM networks to be a more
powerful network scheme in Section IV. The new scheme
actually solves a system of second-order DEs, which
extended design space for unfolded LADMM networks.

3) We further design a novel accelerated Trapezoid LADMM
scheme based on the second-order DEs.

4) Finally, we show more experimental results, especially
of accelerated LADMM schemes and several advanced
methods to verify our analysis.

The main contributions are summarized as follows.
1) Firstly, we propose a new unfolded Euler LADMM

scheme and derive it closely related to the Euler dis-
cretization for solving a system of first-order DEs, which
opens the door for the DEs-inspired unfolded networks.
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2) Then, we introduce the trapezoid discretization and
design an implicit Trapezoid LADMM scheme with
higher precision. Subsequently, we convert this implicit
scheme into an iterable explicit version via the proposed
prediction–correction strategy.

3) Moreover, we find that good performance of unfolded
networks requires not only a high-precision discretization
scheme but also a large representation space. To this end,
we design an accelerated Euler LADMM scheme, which
can be regarded as the second-order DEs with stronger
representation capabilities. To fully explore the space
represented by the second-order DEs, we further design
an accelerated Trapezoid scheme. To the best of our
knowledge, this is the first theoretically guaranteed work
that analyzes the unfolded LADMM networks from the
perspective of first- and second-order DEs.

4) For different inverse problems, we replace the non-
linear operators of the two nonaccelerated schemes
with proximal operators or CNNs and design four
specific nonaccelerated networks, named ELADMM,
TLADMM, ELADMM-Net, and TLADMM-Net. Simi-
larly, our accelerated LADMM schemes are instantiated
as A-ELADMM, A-TLADMM, A-ELADMM-Net, and
A-TLADMM-Net, respectively. The connection between
our methods is also shown in Fig. 2.

5) Experimentally, we first perform an image denoising
task, which verifies that our methods with fewer network
layers outperform existing networks. Furthermore, our
accelerated LADMM networks can find better solutions.
Then, we evaluate the superiority of our methods over
several ISTA-type networks and advanced diffusion
models on image inpainting. Finally, we also perform
various CS experiments to confirm the outstanding
performance of our networks for generalized nonlinear
transformation, where our A-TLADMM-Net can find
better solutions than other methods.

The remainder of this article is organized as follows.
Section II discusses recent advances in ADMM-type optimiza-
tion algorithms. In Section III, we analyze the connection
between unfolded LADMM networks and first-order DEs,
and propose new unfolded Euler and Trapezoid LADMM
schemes. Section IV discusses the connection between accel-
erated Euler LADMM scheme and second-order DEs, and
presents an accelerated Trapezoid scheme. In Section V,
we describe the details for training our networks and eval-
uations for various experiments. Conclusions are discussed in
Section VI.

II. RELATED WORKS

Many works such as [42], [43], [44], and [45] explored
the connection between traditional optimization algorithms
and DEs. The researchers pointed out that many traditional
optimization algorithms can be seen as numerical discretizations
of DEs. Considering the gradient descent method clearly related
to DEs, if we choose an infinitesimal step size to minimize
the objective function f (x), then the gradient descent method
can be regarded as the Euler discretization of the following
first-order differential equation:

Ẋ = −∇ f (X) (3)

where Ẋ ≡ (dX/dt) and X = X(t) is the continuous limit of xk .
This finding helps researchers analyze optimization algorithms
from a new perspective of DEs.

A. ISTA-Type Unfolded Networks and Euler Discretization
We first introduce LISTA as the numerical discretization

of DEs in solving problems without equality constraints.
Considering LISTA: xk+1 = φ(xk, b; 2k) ≜ ST(Wk

1b +

Wk
2xk, θk), where 2k = {Wk

1, Wk
2, θk} are learnable param-

eters, and ST(·, ·) denotes a soft-thresholding function, i.e.,
ST(a, θ) = sign(a) max{0, |a| − θ}. Sander et al. [40] pointed
out that one iteration of LISTA can be regarded as a residual
block with a residual function r(x, b; 2) = φ(x, b; 2) − x.
Thus, the kth layer structure of LISTA can be expressed
as

xk+1 = xk + r(xk, b; 2k) (4)

where r(xk, b; 2k) generalizes the expression of −∇ f (xk).
Then (4) can be seen as the Euler discretization for solving
the first-order differential equation (3). Based on the above
analysis, the ISTA-type methods have made great progress with
the help of differential equation theory. But many machine
learning problems such as Problem (2) are usually constrained,
and the ISTA-type methods cannot solve such problems. Thus,
the ADMM-type algorithms need to be further studied with
the help of differential equation theory.

B. Traditional (Extrapolation Acceleration) ADMMs as DEs
The connection between traditional optimization algorithms

and DEs is bidirectional. First, from the discrete to continuous
limit, i.e., what kind of differential equations (DEs) does
the optimization algorithm solve? On the contrary, how to
construct a discretization with faster convergence speed for
solving Problem (2) from the differential equation theory?
Along these two lines of thought, the work [46] proved that
the continuous limit of ADMM is consistent with a first-order
differential equation. He et al. [47], [48] emphasized the con-
verse and proposed two new accelerated algorithms with
the convergence rate matching the corresponding dynamic
system.

The extrapolation acceleration technology, i.e., x̃k = xk +

ρ(xk − xk−1) with an extrapolation parameter ρ, has been rec-
ognized as an effective acceleration method in the optimization
field [49], [50], [51], [52]. Recently, this extrapolation step has
shown outstanding advantages for solving complex nonconvex
minimax problems [53], not just equality constraint problems.
The relationship between this technology and second-order
differential dynamical systems has been studied in the tra-
ditional ADMM algorithms [46], [50], [54]. For example,
the works [46], [54] proved that the second-order dynamical
systems are the continuity limit of traditional accelerated
ADMMs, and clarified that the solution of the dynamical system
converges weakly to the minimum of the objective function.
Besides, the work [50] proposed a generalized second-order
dynamical system with time-dependent damping terms for
solving Problem (2).

For other popular ADMM variants, there are also some
works such as [55] and [56] exploring their connection with
differential dynamical systems. Reviewing the iterations of
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LADMM [18]

xk+1 = Prox f
L1

{
xk −

1
L1

A⊤(λk + β(Axk + yk − b))
}

yk+1 = Prox g
L2

{
yk −

1
L2

(λk + β(Axk+1 + yk − b))
}

λk+1 = λk + β(Axk+1 + yk+1 − b) (5)

where Prox denotes the proximal operator,1 β is a penalty
parameter, λ is a Lagrange multiplier, and L1, L2 > 0 are
Lipschitz constants, the work [55] analyzed the convergence
behavior of LADMM based on differential inclusions in the
case of nonsmooth f and g. For the large-scale case, the
work [56] applied the stochastic modified equation to study
stochastic ADMMs, revealing important insights into their
convergence behavior. These works are also shown in Fig. 2.
However, to the best of our knowledge, there has been no work
on designing LADMM- or SADMM-type unfolded networks
by constructing discretizations of certain dynamic systems.

C. Unfolded ADMMs
Many well-known works show that the unfolded

ADMMs perform much better than traditional ADMMs.
Yang et al. [11], [34] reported that ADMM-CSNet achieves
surprising experimental performance for the first time by
rewriting the ADMM program as a learnable network
for CS magnetic resonance imaging (MRI). Hu et al. [57]
proposed GPX-ADMM-Net with the generalized proximal
mapping and the work [37] presented the MMV-Net, which
further improve the performance for image reconstruction.
Kouni et al. [58] constructed a Deep Analysis Decoding
network (ADMM-DAD), which achieves better performance
than ISTA-type unfolded networks on speech datasets. As for
LADMM, by introducing learnable matrices, the work [35]
proposed the Differentiable Linearized ADMM (D-LADMM)
to solve the equality constraint problems and analyzed its
linear convergence. The connection between traditional
ADMMs and these unfolded ADMMs is also shown in Fig. 2.

However, the connection between unfolded ADMMs or their
accelerated variants and DEs remains a secret. The above
facts motivate us to investigate the comprehensive connection
between the unfolded ADMM-type network structures and the
numerical discretizations of DEs. Not least, we hope that this
comprehensive connection can inspire the design of novel and
more efficient ADMM-type unfolded networks.

D. Trapezoid Discretization
As we all know, the Euler discretization uses the rect-

angular formula to roughly approximate the integral, while
the trapezoid discretization approximates the integral of the
function f (x) with higher precision. In the field of unfolded
algorithms, we extend the trapezoid discretization as the
following paradigm:

xk+1 = xk +
h
2

[
f (xk, 2k) + f (xk+1, 2k)

]
(6)

where h is a DE-stepsize and 2k is a learnable parameter
set. Since xk+1 exists on both sides of the (6), it needs to be
executed iteratively by the prediction-correction strategy.

1The proximal operator of the function f is defined as Prox f a(x) =

arg minz{(a/2)∥z − x∥
2
+ f (z)}.

Notation: In this article, the norm ∥ · ∥ denotes the ℓ2-
norm of the vector, and ∥ · ∥1 denotes the ℓ1-norm of the
vector, i.e., ∥x∥1 =

∑
i |xi |. ∇ f (·) denotes the gradient of

differentiable function f (·) and ∂ f (·) denotes the subgradient
of nondifferentiable but Lipschitz continuous function f (·).
The L-smoothness assumption of the function f implies that
∥∇ f (x1) − ∇ f (x2)∥ ≤ L∥x1 − x2∥.

III. UNFOLDED LADMM SCHEMES

Existing works studied the connection between ISTA-type
unfolded networks and DEs to solve unconstrained problems,
but the DE analysis theory of existing works only is lim-
ited to the traditional ADMM algorithms. In this section,
we further elucidate how unfolded ADMMs solve equality
constraint problems through discretizations of the first-order
DEs. We observe that D-LADMM [35] can be considered
as the Euler discretization for solving a system of first-order
DEs. Following this observation, we focus on the case from
the continuous limit to discrete and construct a new scheme
inspired by trapezoid discretization. The novel scheme inherits
the advantages of trapezoid discretization and achieves better
theoretical results.

A. Unfolded Euler LADMM Scheme as the First-Order DEs
Along the idea of unfolded algorithms, we first unfold the

iterations of LADMM into a unified structure with DE-stepsize
h, called the unfolded Euler LADMM scheme

xk+1 = F f

(
xk +

hβk
θk

Fk(xk)
)

yk+1 = Gg

(
yk +

h
ηk

Gk(yk)
)

λk+1 = λk + hβk(Axk+1 + yk+1 − b)

(7)

where Fk(x) = −W⊤

k ((λk/βk) + Ax + yk − b), Gk(y) =

−((λk/βk) + Axk+1 + y − b), and {Wk, θk, ηk, h, βk} are
optimized by end-to-end training, while Wk ≡ A in traditional
ADMM [46]. It is especially worth noting that F f and Gg are
but not limited to nonlinear operators depending on the problem
model. For example, when they are proximal operators or
multiplication transformations, (7) degenerates into ELADMM
and further D-LADMM [35] with DE-stepsize h=1. When they
are generalized nonlinear operators such as CNNs, we call (7)
ELADMM-Net. Fig. 2 also clearly shows these relationships.
As for theoretical insight, Lemma 1 provides a novel first-order
DEs perspective to interpret such a scheme.

Lemma 1 (Unfolded Euler LADMM Scheme as the first-
Order DEs): The optimal trajectory function is defined as
X (t) = (X(t)⊤, Y(t)⊤, 3(t)⊤)⊤. We assume that the functions
f and g are closed convex but possibly nonsmooth, F f and
Gg are both proximal operators and A has full column rank.
Then, the continuous limit associated with the updates in (7)
with timescale t = kh corresponds to a system of first-order
DEs

Ẋ = F (X ), with X (0) =

x0
y0
λ0

 (8)

where

Ẋ =

Ẋ
Ẏ
λ̇

, F (X )=


1

θ(t)

(
F(X) − ∇ fµ1(X)

)
1

η(t)

(
G(Y) − ∇gµ2(Y)

)
β(t)(AX + Y − b)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 13,2025 at 04:20:23 UTC from IEEE Xplore.  Restrictions apply. 



AN et al.: DEs-INSPIRED ACCELERATED UNFOLDED LINEARIZED ADMM NETWORKS 5

and fµ1(·) and gµ2(·) are the Moreau-Yosida approximations2

of f (·) and g(·), respectively. When there is no confusion,
we ignore the dependence on t and denote X(t), Y(t) and
3(t), as X, Y and 3, respectively.

Proof: By the definitions of Fk(x) and Gk(y), and the
proximal operators F f (x) ≜ Prox f (θk/h)(x) and Gg(y) ≜
Proxg(ηk/h)(y), our Euler LADMM scheme (7) can be refor-
mulated as

xk+1 = argmin
x

{
f (x) +

θk
2h

∥∥x − xk

+
hβk
θk

W⊤

k

(
λk
βk

+ Axk + yk − b
)∥∥2

}
yk+1 = argmin

y

{
g(y) +

ηk
2h

∥∥y − yk

+
h
ηk

(
λk
βk

+ Axk+1 + yk − b
)∥∥2

}
λk+1 = λk + hβk(Axk+1 + yk+1 − b).

(9)

Since f and g are convex functions, and A has full column
rank, the optimization subproblems in (9) are strongly convex
such that (xk+1, yk+1, λk+1) is unique. From the optimality
conditions for (9), we can obtain the following inclusions:

0 ∈ ∂ f (xk+1) +
θk
h (xk+1 − xk

+
hβk
θk

W⊤

k

(
λk
βk

+ Axk + yk − b
))

0 ∈ ∂g(yk+1) +
ηk
h (yk+1 − yk

+
h
ηk

(
λk
βk

+ Axk+1 + yk − b
))

λk+1 = λk + hβk(Axk+1 + yk+1 − b).

(10)

We consider the first inclusion

0∈∂ f (xk+1)+θk
xk+1−xk

h
+W⊤

k (λk +βk(Axk +yk −b)). (11)

Let t = hk and xk = X(t), with the similar notation for
yk and λk in the limit h → 0. By using the Mean Value
Theorem on the i th component of xk+1 and yk+1, we have
that xk+1,i = Xi (t + h) = Xi (t) + hẊi (t + ξi h) and yk+1,i =

Yi (t + h) = Yi (t) + hẎi (t + ξi h) for some ξi ∈ [0, 1]. Thus,
limh→0((xk+1,i − xk,i )/h) = limh→0 Ẋi (t + ξi h) = Ẋi (t),
limh→0((yk+1,i − yk,i )/h) = limh→0 Ẏi (t + ξi h) = Ẏi (t),
and limh→0 xk+1 = X(t). We define θ(t) and β(t), and let
βk → β(t), θk → θ(t) in the limit h → 0. Then (11) can be
written as the following differential inclusion:

0 ∈ ∂ f (X(t)) + θ(t)Ẋ(t) − F(X(t)) (12)

where F(X) = −W(t)⊤(3(t) + β(t)(AX(t) + Y(t) − b)).
W(t), β(t) and θ(t) generalize the constant coefficients in
the continuous limit of the traditional ADMM algorithm (e.g.,
the first-order differential equation [46]). And by the same
logic, we get

0 ∈ ∂g(Y(t)) + η(t)Ẏ(t) − G(Y(t)) (13)

where G(Y) = −((3(t)/β(t)) + AX(t) + Y(t) − b). Next,
let us consider the third equation in (9), 3(t + h) − 3(t) −

hβ(t)(AXi (t + h) + Yi (t + h) − b) = 0
h→0
−−→ 3̇(t) −

β(t)(AX(t) + Y(t) − b) = 0. Finally, since (12) and (13) are
first-order differential inclusions, we set the initial conditions
X(0) = x0, Y(0) = y0 and 3(0) = 30, where x0 and y0 are

2The Moreau-Yosida approximation of a convex function f is defined as
fµ(x) := infz{ f (z) + (1/2µ)∥z − x∥

2
}. For any µ > 0, the function fµ is a

convex and continuously differentiable [59].

initial solution estimations of Problem (2). Then we can obtain
a differential inclusion system

0 ∈ ∂ f (X(t)) + θ(t)Ẋ(t) − F(X(t))
0 ∈ ∂g(Y(t)) + η(t)Ẏ(t) − G(Y(t))
3̇(t) − β(t)(AX(t) + Y(t) − b) = 0

(14)

which generalizes the differential inclusion system in [59],
where W(t) ≡ A. Following [55], we consider the
Moreau–Yosida approximations fµ1(x) and gµ2(y) of functions
f (x) and g(y) with µ1, µ2 > 0. Then, we can obtain a system
of first-order approximating DEs as shown in (8). □

Lemma 1 indicates that the sequence {xk, yk, λk} generated
by Euler LADMM (7) is as close as possible to the trajectory
modeled by the first-order DEs (8). That is, the Euler LADMM
scheme for solving Problem (2) can be considered as the Euler
discretization for solving the first-order DEs (8) with the initial
conditions X0 = X (0), which actually answers the 1st key
question in our motivations. Taking D-LADMM as an example
will make it clearer. D-LADMM can be seen as solving such a
system of first-order DEs with h ≡ 1, while our Euler LADMM
scheme is more flexible in choosing DE-stepsize h, so it usually
performs better than D-LADMM. Overall, the connection with
theoretical guarantees between unfolded LADMM networks
and the first-order DEs has been clarified.

B. Trapezoid LADMM Scheme as the First-Order DEs
We have explained the connection between the unfolded

Euler LADMM scheme and the system of first-order
DEs, which broadens our horizon for designing unfolded
LADMM networks. To further improve the precision of the
Euler scheme (7) and explore the structural diversity of
unfolded LADMM networks, we propose a new discretization
scheme, called unfolded Trapezoid LADMM scheme, to solve
Problem (2).

1) Implicit Trapezoid LADMM Scheme as DEs: By intro-
ducing the trapezoid discretization into the updates of x and
y, we propose a new network structure, called the implicit
Trapezoid LADMM scheme

xk+1 = F f

(
xk +

hβk
2θk

(Fk(xk)+Fk(xk+1))
)

yk+1 = Gg

(
yk +

h
2ηk

(Gk(yk)+Gk(yk+1))
)

λk+1 = λk + hβk(Axk+1 + yk+1 − b).

(15)

Regarding the principle, the implicit Trapezoid LADMM
scheme (15) is still recast as the DEs (8) by Lemma 2.

Lemma 2 (Unfolded Implicit Trapezoid LADMM Scheme as
the First-Order DEs): Based on the same assumptions as in
Lemma 1, the continuous limit associated with the implicit
Trapezoid LADMM scheme (15) also corresponds to the system
of first-order DEs (8).

Lemma 2 shows that the same first-order DEs (8) can also
be derived by the implicit Trapezoid scheme (15), and its proof
can be found in the Supplementary Material. It can be known
from the work [60, Ths. 15.1–15.5] that the existence and
uniqueness of the solution of DEs (8) can be guaranteed under
Lipschitz continuous conditions. Thus, we can further compare
the accuracy of our two schemes. Conversely, if our Euler and
Trapezoid LADMM schemes can not correspond to solve the
same system of first-order DEs, then our Trapezoid LADMM
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scheme may not produce an unfolded network with a faster
convergence rate despite its higher precision.

2) Advantages of Trapezoid LADMM Scheme Over Euler
LADMM Scheme: We directly give theoretical results for the
accuracy of our two schemes.

Theorem 1: Suppose that: 1) f and g are L f -smooth and
Lg-smooth, respectively and 2) F f and Gg are nonexpansive
mappings. Then the local and global error bounds of the implicit
Trapezoid scheme (15) are O(h3) and O(h2), while those of
the Euler scheme (7) are O(h2) and O(h), respectively.

In fact, when functions f and g are simple nonsmooth
functions, e.g., ℓ1-norm, Theorem 1 still holds. Specifically,
there are two cases to be discussed.

1) Define the set A = {i |x1i x2i ̸= 0, i = 1, . . . , d},
we can choose a constant c1 > 0 such that ∥∇ f (x1a) −

∇ f (x2a)∥ ≤ c1∥x1a − x2a∥, and further ∥∇ fµ1(x1a) −

∇ fµ1(x2a)∥ ≤ c1∥x1a − x2a∥ for ∀a ∈ A.
2) Define a set B = { j |x1 j x2 j = 0, j = 1, . . . , d}, without

loss generality, we assume x1 j > 0 and x2 j = 0, i.e.,
considering the nondifferentiable case, Moreau-Yosida
approximation allows us to choose a constant c2 such that
∥∇ fµ1(x1b) − ∇ fµ1(x2b)∥ ≤ c2∥x1b − x2b∥ for ∀b ∈ B.

Thus, there exists a constant L fµ1
= max{c1, c2} such that

∥∇ fµ1(x1) − ∇ fµ1(x2)∥ ≤ L fµ1
∥x1 − x2∥ as well as g, which

plays an important role in the analysis of Theorem 1.
Theorem 1 shows that the implicit Trapezoid LADMM

scheme can obtain lower error bounds than the Euler scheme (7).
Therefore, the implicit Trapezoid LADMM scheme can gen-
erate update points closer to the optimal trajectory X (t) than
the Euler LADMM scheme, thereby reducing the deviation
from the optimal trajectory, which actually answers the 2nd
key question in our motivations.

3) Practical Solution-Explicit Trapezoid LADMM Scheme:
Considering the implementation of our implicit scheme (15),
there is xk+1 or yk+1 on both sides of the iterations, which
requires solving such two equations, respectively. This is
computationally intractable, especially when dealing with
complicated nonlinear operators F f and Gg . To deal with this
difficulty, we propose a more feasible scheme called the explicit
Trapezoid LADMM scheme through a prediction–correction
strategy, as shown in “Case 1” of Algorithm 1. Compared with
relevant unfolded algorithms, there are two main differences
in Algorithm 1 as follows.

(i) Main Idea of Prediction–Correction Strategy: About the
update of x in (15), xk+1 can be seen as a fixed point. Then
we give the following fixed point iteration to solve it:

xi+1
k+1 = F f

(
xk +

hβk
2θk

(
Fk(xk)+Fk

(
xi

k+1

)))
. (16)

With an initial point x0
k+1, the sequence {xi

k+1} produced by (16)
can converge to the solution xk+1. To trade off the quality of
the solution and the computational cost, we design an efficient
prediction step to initialize x0

k+1 and correct the initial point
x0

k+1 once to approximate (16) in lines 11 and 12 of Algorithm 1.
Similarly, the prediction–correction strategy of variable y is
given in lines 13 and 14 of Algorithm 1. Moreover, F f and
Gg still vary in different problem models.

▷ For the general structural regularizers, F f and Gg are gen-
eralized nonlinear operators and the explicit Trapezoid scheme
is instantiated as TLADMM-Net for solving applications such
as CS inverse problems.

Algorithm 1 Explicit (Extrapolation Acceleration) Trapezoid
LADMM Schemes
Input: hyper-parameter α, matrix A, the layer numbers K ,

and the training dataset D = {(bi , x∗

i , y∗

i )}
N
i=1.

Initialize: X0, 2 = {Wk, h, θk, ηk, βk}
K−1
k=0 .

Inference:
1: Choose a minibatch of observations b of size Nb from D;
2: for k = 0, 1, . . . , K − 1 do
3: Case 1: Nonaccelerated Explicit Trapezoid LADMM
4: x̄k = xk , ȳk = yk , λ̄k = λk ;
5: ak =

θk
h , ck =

ηk
h , ek = hβk ;

6: Case 2: Accelerated Explicit Trapezoid LADMM
7: x̃k = xk +

1
hθk+1 (xk − xk−1), x̄k = x̃k ;

8: ỹk = yk +
1

hηk+1 (yk − yk−1), ȳk = ỹk ;

9: λ̃k = λk +
βk

βk+h (λk − λk−1), λ̄k = λ̃k ;

10: ak =
1+hθk

h2 , ck =
1+hηk

h2 , ek =
h2βk
βk+h ;

11: x0
k+1 =F f (x̄k +

βk
ak

Fk(x̄k)); //Prediction

12: xk+1 =F f (x̄k +
βk
2ak

[Fk(x̄k) + Fk(x0
k+1)]); //Correction

13: y0
k+1 =Gg(ȳk +

1
ck

Gk(ȳk)); //Prediction
14: yk+1 =Gg(ȳk +

1
2ck

[Gk(ȳk) + Gk(y0
k+1)]); //Correction

15: λk+1 = λ̄k + ek(Axk+1 + yk+1 − b);
16: end for

Training:
17: if the ground truth x∗

Nb
, y∗

Nb
of observation b exists then

18: Loss1 = min2
1

Nb

∑K
k=1

k∑
k (∥xk − x∗

Nb
∥

2
+ ∥yk − y∗

Nb
∥

2);
19: else
20: Loss2 = min2

1
Nb

∑K
k=1

k∑
k ( f (xk) + g(b − Axk));

21: end if
Output: M(A,D;X0; 2) = (xK , yK ).

▷ For ℓ2-norm or “simple” norm constraint, in the sense that
the proximal operator has a closed-form solution [49], these two
nonlinear operators only involve multiplication transformations
and matrix inversions or soft-thresholding, and the explicit
Trapezoid scheme degenerates to TLADMM.

(ii) Network Training: Given a matrix A and a training
dataset D = {(bi , x∗

i , y∗

i )}
N
i=1, our explicit Trapezoid scheme

aims to reduce the discrepancy between (x∗

i , y∗

i ) and the output
(xK , yK ) by optimizing the parameters 2. Thus, we adopt
end-to-end training and design the weighted multilayer loss,
i.e., Loss1, as the training loss function, which alleviates the
vanishing gradient problem and ensures better reconstruction
performance. When there is no GT (x∗, y∗), we utilize the
model objective, i.e., Loss2, as the training loss function. Note
that the learned parameters {θk, ηk, βk, h} > 0 are scalars
rather than matrices or vectors, which reduces redundancy
especially when training on small-scale datasets. Here we keep
all learnable parameters 2 for our analysis.

The structure of the kth inference stage of our explicit
Trapezoid scheme is shown in Fig. 3, where nonlinear operators
are visualized through simple CNN modules for generality.
Compared with the plug-and-play methods [62], our schemes
are trained end-to-end, without relying on any pretrained
network. Since the use of the forecast-correction strategy, the
variables xk , yk and λk are first updated by a forward prediction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 13,2025 at 04:20:23 UTC from IEEE Xplore.  Restrictions apply. 



AN et al.: DEs-INSPIRED ACCELERATED UNFOLDED LINEARIZED ADMM NETWORKS 7

Fig. 3. Network structure of the kth inference stage of Algorithm 1. We generalize the network architecture in conference version [41]. Note that
Hk(λk) = λ̄k + ek(Axk+1 + yk+1 − b). The (xk , yk ,λk) replaces  as the unfolded Trapezoid LADMM scheme and the (̃xk , ỹk , λ̃k) replaces  as the
accelerated unfolded Trapezoid LADMM scheme. The orange line denotes the independent update of each variable, the blue line denotes information interaction
between variables, and the green line denotes skip connections, just like the identity mapping of ResNet [61].

step, followed by a further correction step, then the well-trained
explicit Trapezoid scheme M(A,D;X0; 2) can be viewed as
a traditional optimizer with better parameters 2 with the help
of training data. In fact, we have proved that there exists a set
of learnable parameters for our Trapezoid LADMM scheme to
generate converged solutions.

IV. ACCELERATED UNFOLDED LADMM SCHEMES

According to the analysis above, high-precision trapezoid
discretization of first-order DEs can improve the performance of
unfolded networks. While higher-precision numerical methods
(e.g., the Runge–Kutta method [63]) can potentially yield
improved unfolded LADMM networks, the first-order DEs (8)
may impose a limitation on their upper performance limit.
Thus, not only the high-precision discretization but also the
function space represented by DEs influence the performance of
the unfolded LADMM networks. To overcome this limitation,
a question arises naturally: how can we establish the connec-
tion between unfolded LADMM networks and higher-order
(e.g., second-order) DEs, thereby expanding the representation
space? To answer this question, we discuss the behavior of
extrapolation acceleration technology in LADMM networks
and devise stronger accelerated LADMM schemes.

A. Our Accelerated Unfolded Euler LADMM Scheme

We design an accelerated unfolded Euler LADMM scheme
by incorporating the extrapolation acceleration technology with
different extrapolation parameters ρ for x, y, and λ as follows:

x̃k = xk +
1

hθk+1 (xk − xk−1)

xk+1 = F f

(̃
xk +

h2βk
1+hθk

Fk (̃xk)
)

ỹk = yk +
1

hηk+1 (yk − yk−1)

yk+1 = Gg

(̃
yk +

h2

1+hηk
Gk (̃yk)

)
λ̃k = λk +

βk
βk+h (λk − λk−1)

λk+1 = λ̃k +
h2βk
βk+h (Axk+1 + yk+1 − b).

(17)

Compared with the nonaccelerated Euler scheme (7), three
extrapolation sequences {̃xk}, {̃yk} and {λ̃k} are added, which

play an important role in the derivation of second-order
DEs. Similarly, (17) can be instantiated as A-ELADMM and
A-ELADMM-Net. The clear connection between them can
be also found in Fig. 2. About theoretical insights, Lemma 3
means that this accelerated scheme can be regarded as a system
of second-order DEs in the continuous limit.

Lemma 3 (Accelerated Unfolded Euler LADMM Scheme as
the Second-Order DEs): Based on the same assumptions as
in Lemma 1, the continuous limit associated with the updates
in (17) corresponds to the system of second-order DEs

ϵ · Ẍ + Ẋ = F (X ),X (0) =

x0
y0
λ0

, Ẋ (0) =

u0
v0
w0

 (18)

where ϵ = ((1/θ(t)), (1/η(t)), β(t))⊤, Ẍ = (Ẍ, Ÿ, λ̈)⊤,
where θk → θ(t), ηk → η(t) in the limit h → 0. Note
that this system of DEs generalizes the dynamic [50], where
(1/θ(t)) = (1/η(t)) = β(t).

Proof: In a similar way, our accelerated Euler LADMM
scheme (17) can be rewritten as one minimizing problem,
which has the following first-order optimality conditions with
proximal parameters ((1 + hθk)/h2) and ((1 + hηk)/h2):

0 ∈ ∂ f (xk+1)+
1+hθk

h2

(
xk+1 − x̃k −

h2βk
1+hθ k

Fk (̃xk)
)

0 ∈ ∂g(yk+1)+
1+hηk

h2

(
yk+1 − ỹk −

h2

1+hηk
Gk (̃yk)

)
λk+1 = λ̃k +

h2βk
βk+h (Axk+1 + yk+1 − b).

(19)

Consider Taylor’s Theorem for the i th component of xk±1

xk±1,i = Xi (t ± h)

= Xi (t) ± hẊi (t) +
1
2

h2Ẍi
(
t ± ξ±

i h
)

(20)

for some ξ±

i ∈ [0, 1]. Hence, we have

xk+1,i − x̃k,i = xk+1,i − xk,i −
1

1+hθk

(
xk,i − xk−1,i

)
=

h2θk
1+hθk

Ẋi (t) +
1
2 h2Ẍi

(
t + ξ+

i h
)

+
h2

2(1+hθk )
Ẍi

(
t − ξ−

i h
)
. (21)
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Substituting (21) into (19) and letting h → 0, we obtain

0 ∈ Ẍ(t) + ∂ f (X(t)) + θ(t)Ẋ(t) − F(X(t)). (22)

Similarly, 0 ∈ Ÿ(t) + ∂g(Y(t)) + η(t)Ẏ(t) − G(Y(t)) can
be also obtained. About λ, we can obtain β(t)3̈(t) +

3̇(t) − β(t)(AX(t) + Y(t) − b) = 0. We also consider the
Moreau-Yosida approximations fµ1(x) and gµ2(y) of objectives
f (x) and g(y) with µ1, µ2 > 0. Then the accelerated Euler
LADMM scheme (17) corresponds to solve the system of
second-order approximating DEs (18). □
Furthermore, we turn to discuss the representation capabilities
of our LADMM schemes in the continuous limit.

1) Representation Capabilities: According to [40,
Proposition 3], we know that the first-order DEs (8) is not
a universal approximator, while our accelerated unfolded
Euler LADMM scheme is treated as second-order DEs (18)
in the continuous limit, so it can represent a strictly larger
class of functions. In other words, our accelerated unfolded
Euler LADMM scheme can search the solution trajectory in
a larger function space than nonaccelerated schemes. Thus,
our accelerated Euler scheme can break the barrier caused
by the first-order DEs (8) and generate better solutions than
nonaccelerated schemes.

2) High-Level Idea: The first- and second-order DEs can be
interpreted as continuous equivalent formulations of unfolded
LADMM schemes and the accelerated unfolded Euler LADMM
scheme, respectively. More convincingly, we can further
intuitively understand this fact like Neural ODEs [64]. In fact,
the variable at time T , i.e., X (T ), corresponds to the output of
our schemes. An analogy of DEs to our (accelerated) unfolded
LADMM schemes can make it more explicit. Our LADMM
schemes map an input (x0, y0, λ0) to some output (xK , yK , λK )

through a forward propagation of the schemes. We then
adjust the weights (e.g., θk , ηk and proximal parameters) by
backward propagation to match (xK , yK , λK ) with (x∗, y∗, λ∗).
From the perspective of DEs, they map the initial values
(x0, y0, λ0) to (xK , yK , λK ) by solving the DEs starting from
this initial conditions. We then adjust the dynamics (encoded
by F ) such that the DEs transforms (x0, y0, λ0) into an
output (xK , yK , λK ) that is as close as possible to (x∗, y∗, λ∗).
The above analysis also explains that more precise numerical
discretizations for solving DEs usually lead to more efficient
unfolded LADMM networks.

B. Accelerated Unfolded Trapezoid LADMM Scheme
According to representation capabilities, the second-order

DEs can represent a larger class of functions. Specifically, for
any sequence {xk, yk, λk} in the first-order DEs solution space,
there is at least one sequence in the solution space represented
by the second-order DEs with a similar optimization perfor-
mance and even better. However, our scheme (17) sometimes
fails to find this ideal sequence. For example, as shown in Fig. 4,
although the scheme (17) is superior to the nonaccelerated
Euler scheme, it can not achieve better performance than the
nonaccelerated Trapezoid LADMM scheme, thus there is still
a gap between the sequences {xk, yk, λk} generated by (17)
and optimal trajectory. Therefore, good performance requires
not only a larger function space but also an unfolded network
discretization scheme with higher accuracy, which motivates us
to further improve the scheme (17). In other words, we need

Fig. 4. Comparison of NMSE results at sampling probability p = 0.08 (left)
and p = 0.1 (right) for unfolded LADMM networks.

to design a new scheme to solve second-order DEs (18) better.
Following the idea of the Trapezoid LADMM scheme (15),
we design an accelerated unfolded Trapezoid scheme, which
is implicit. Due to space limitations, it can be found in the
Supplementary Material.

Subsequently, we provide a more effective explicit version
through the proposed prediction–correction strategy, of which
the procedure can be found in “Case 2” of Algorithm 1
and the kth block structure is also shown in Fig. 3. Here,
we added dotted lines to denote extrapolation acceleration
steps. In the next section, extensive experimental results show
that this explicit scheme can find solutions closer to the optimal
trajectory and obtain better performance.

V. EXPERIMENTS

We perform extensive inverse problem experiments to
verify the feasibility and effectiveness of our schemes. In
Sections V-A–V-C, we test our schemes by instantiating
F f and Gg as multiple transformation or soft-thresholding
operators, and we name our methods as (A-)ELADMM and
(A-)TLADMM, respectively. In Sections V-D–V-F, we simulate
generalized nonlinear operators F f and Gg by using simple
CNNs for solving the CS inverse problems, and we name them
as (A-)ELADMM-Net and (A-)TLADMM-Net, respectively.
For fair comparison, we set K as the number of layers
for matching the compared methods instead of the default.
Our source codes are available: https://github.com/Weixin-An/
A-TLADMM-Net. Due to the page limit, more experimental
results are provided in the Supplementary Material.

A. Simulation Experiments
We first evaluate our methods on synthetic datasets. We con-

sider the specific equality constraint model

min
x∈R500,y∈R250

α∥x∥1 + ∥y∥1, s.t. Ax + y = b (23)

where x is the data to be restored, y is the noise to be removed,
α is a hyper-parameter to balance the restoration results
and denoising performance, and b ∈ Rm is an observation
vector. Each entry in the dictionary matrix A is sampled
from independent and identical Gaussian distribution, namely
Ai, j ∼ N (0, 1/250), and then we normalize its columns to
have ℓ2 unit norm. We apply the Bernoulli sampling with
probabilities p=0.08 and 0.1 to the variables x and y. In this
problem, both nonlinear operators F f and Gg become soft-
thresholding operators.

We set the number of training and testing samples to
10 000 and 1000, respectively. We train our four methods and
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D-LADMM with the layer numbers K =15 by using the SGD
algorithm optimizing Loss1. For testing, we choose normalized
mean square error (NMSE = 10 log10((∥xk − x∗

∥
2/∥x∗

∥
2) +

(∥yk − y∗
∥

2/∥y∗
∥

2))) to evaluate the performance of all the
networks. The experimental results are shown in Fig. 4.

Discussion on Convergence Rate: Fig. 4 shows that
our ELADMM achieves a similar linear decay rate as
D-LADMM [35] and it converges faster than D-LADMM.
Moreover, we have proved in our conference version [41]
that our Trapezoid LADMM scheme achieves a similar linear
decay rate to D-LADMM, and Fig. 4 also verifies this
conclusion. As for the accelerated LADMM schemes, they
achieve better convergence performance than the linearly
convergent ELADMM, which also provides support for their
consistent linear decay rates with our nonaccelerated LADMM
schemes.

As shown by the curves in Fig. 4, we also observed that our
ELADMM converges slightly faster than D-LADMM because
ELADMM is more flexible in the choice of h. TLADMM
outperforms significantly ELADMM and D-LADMM, which
confirms our conclusions in Theorem 1. Besides, A-TLADMM
performs distinctively, which shows that it has found a better
optimization trajectory in a larger function space. Note that
ISTA-type unfolded algorithms can not solve this problem.
This simulation experiment verifies that the Trapezoid-guided
schemes can effectively improve convergence speed and further
the accuracy of data recovery, and our accelerated networks
can find better optimization trajectories.

B. Natural Image Denoising
We further evaluate the denoising performance of our

methods on natural images and verify the stability of our
methods with fewer network layers. The Waterloo BragZone
Greyscale (WBZG) and FFHQ 256 × 256-1k [65] datasets
are used for testing and r% salt-and-pepper noise is added to
each dataset. b contains 10 000 and 1024 noisy image blocks
with size 16 × 16 in the training and testing sets for our
methods, respectively. We use the patch-dictionary method [66]
to initialize dictionary matrix A in (23). We evaluate denoising
performance by using peak signal-to-noise ratio (PSNR) as
shown in Tables I and II, where we implemented the source
code of D-LADMM and MPRNet [9] as baselines. For
practicality, we consider the case of unknown GT and use
the loss function (24) to train our methods

Loss2 = min
2

1
Nb

K∑
k=1

k∑
k
(∥Axk − b∥1 + α∥xk∥1). (24)

From Table I and the results in the Supplementary Material,
it can be seen that our TLADMM improves the denoising
performance by about 2.2/2.3 dB over ELADMM/D-LADMM,
which is because our TLADMM corresponds to the Trapezoid
discretization and can generate points closer to the optimal
trajectory of x- and y-subproblems in each iteration, while
D-LADMM and ELADMM only correspond to the Euler
discretization with lower precision. Our A-TLADMM further
improves the denoising result of our TLADMM by 0.4 dB,
which also confirms our intuition. From Tables I and II, and
Fig. 3, both our TLADMM and A-TLADMM still outperform
D-LADMM at almost the same time cost despite their two

TABLE I
COMPARISON OF THE PSNR (DB) RESULTS ON 12 IMAGES IN THE

WBZG DATASETS AT SALT-AND-PEPPER NOISE RATES 5%, 10%, AND
15%. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE

HIGHLIGHTED IN RED, BLUE, AND GREEN, RESPECTIVELY

TABLE II
COMPARISON OF THE PSNR RESULTS ON THE FFHQ 256×256-1K DATASET

AT SALT-AND-PEPPER NOISE RATIOS 5%, 10% AND 15%

TABLE III
COMPARISON OF DENOISING RESULTS WITH DIFFERENT K ON WATERLOO

BRAGZONE GREYSCALE SET2 AT 10% SALT-AND-PEPPER NOISE

additional correction steps. In short, our (non)accelerated Trape-
zoid LADMM schemes can improve denoising performance
with the limited number of network layers. These all confirm
that more accurate numerical discretizations can lead to better
unfolded LADMM networks.

Ablation Study: To assess how much our loss Loss2 and
trapezoid structure each contribute, we performed the following
ablation study. We replace the training loss function of original
D-LADMM [35] and TLADMM with Loss2 and the loss of
D-LADMM, respectively. Setting different layer numbers K ,
we train the networks on these four cases with α = 0.2.
Table III summarizes the PSNR results on the dataset “WBZG
set2.” It can be found that only changing the loss function
will also improve the performance of 0.4 dB of D-LADMM.
However, such improvement is far less significant than that of
our TLADMM with the loss of D-LADMM (2.0 dB). Moreover,
comparing the TLADMM with the loss of D-LADMM and our
Loss2, TLADMM with Loss2 can improve the denoising result
by 0.3 dB on average. Thus, taking the objective function as
the training loss can impose strict constraints on the training
procedure, which can be regarded as a substitute for no GT.
Moreover, it is also verified that the trapezoid structure plays
a more important role than our loss functions.

C. Natural Image Inpainting
Image inpainting is one of the most typical ill-posed

inverse problems. We also perform our (A-)ELADMM and
(A-)TLADMM to solve this task, which will indicate advan-
tages over advanced methods and identify that the trapezoid
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TABLE IV
COMPARISON OF NATURAL IMAGE INPAINTING RESULTS IN TERMS OF PSNR (DB) ON THE SET11 DATASET AT PIXEL MISSING RATIO 50%

Fig. 5. Comparison of visual and PSNR (dB) results for natural image inpainting at pixel missing ratio 50% on Cameraman (top) and Barbara (bottom)
images. From left to right are the GT, corrupted image, and the recovery results of LFISTA [67], GLISTA [31], ELISTA [32], D-LADMM [35], ELADMM
(Ours), A-ELADMM (Ours), TLADMM (Ours), and A-TLADMM (Ours).

discretization and extrapolation acceleration technology can
enhance the performance of unfolded LADMM networks in
different problem models. Assuming images corrupted by a
mask M with a missing pixel ratio r%, the image inpainting
problem can be expressed as

min
x,y

1
2
∥y∥

2
+ α∥x∥1, s.t. MDx + y = b (25)

where b are corrupted image patches, α balances the noise and
sparsity, and the dictionary matrix D is generated by training
clean images. In this problem, F f becomes a soft-thresholding
operator and Gg becomes a multiple transformation (βk/(1 +

βk))I(·). By the end-to-end training, the learned linearized opti-
mizer M(A,D;X0; 2) has a natural advantage, i.e., preventing
O(d3) computational complexity caused by matrix inversion
and matrix–matrix multiplication in existing ADMM-type
unfolded algorithms.

We divide the images in the BSD500 dataset into 16 ×

16 size image blocks and randomly select N = 50 000 blocks
for training with a batch size of 256. Based on the source
code of LFISTA [68], we implement our methods and other
compared algorithms by ourselves. The dataset Set11 is used
to evaluate the performance of all the methods. For a fair
comparison, we set the same layer numbers K =20 in all the
methods and train them by using our Loss1. All numerical
results with r = 50 are listed in Table IV. We further choose
PSNR and Normalized Root Mean Square Error (NRMSE =

(1/|S|)
∑

(b,x∗)∈S(∥M(A, b; x0; 2) − x∗
∥/∥x∗

∥)) to evaluate
test performance at different missing ratios, where S contains
the pairs of testing data. The inpainting visual results are shown
in Fig. 5 and the inpainting results at different missing ratios
(e.g., 30%, 40%, 50%, 60%, and 70%) are shown in Fig. 6.

From Table IV, we observe that our (A-)ELADMM and
(A-)TLADMM perform consistently much better than the

Fig. 6. Natural image inpainting results in terms of PSNR and NRMSE with
missing ratios 30%, 40%, 50%, 60% and 70% on the Set11 dataset.

ISTA-type networks, including LFISTA, GLISTA, and ELISTA
on all images. Besides, our A-TLADMM and A-ELADMM
find better solutions than their nonaccelerated counterparts.
As we can see, the average PSNR results of TLADMM and
A-TLADMM are about 0.6 and 1.1 dB higher than those
of ELADMM and A-ELADMM, respectively, which implies
that the trapezoid strategy can also improve the acceleration
LADMM networks. Fig. 5 displays the inpainting effect for
all the networks on Barbara and Cameraman (abbreviated as
C.man) images, where our A-TLADMM can recover higher
quality images than other methods. For a more comprehensive
comparison, Fig. 6 indicates that our Trapezoid LADMM
schemes consistently outperform the compared methods, even
at high pixel missing ratios, and the lower the pixel missing
ratio, the more obvious the improvement.

Comparison With Advanced Methods: To provide a more
encompassing perspective on the practical utility of our
methods, we compare them with the recent MMES [69] and the
diffusion model DPS [12] on the natural image inpainting task.
Note that the DPS method depends on a pretrained denoising
network. We test our above-trained TLADMM, A-TLADMM
networks, the MMES method and the DPS model on the color
FFHQ 256 × 256.1k dataset [65] and the results of PSNR and
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TABLE V
COMPARISON OF THE PSNR AND LPIPS RESULTS AND GPU TIME (S) FOR

INFERENCE ON THE COLOR FFHQ 256 × 256.1K DATASET AT PIXEL
RANDOM MISSING RATIOS γ = 30%, 50% AND 70%

learned perceptual image patch similarity (LPIPS) are shown
in Table V. It is clear that our TLADMM and A-TLADMM
almost all outperform the diffusion model DPS and the MMES
method at different pixel-missing ratios.

D. CS for Natural Image
Here, we expand our methods to solve the CS inverse

problem and show the advantages of our schemes in the case of
generalized nonlinear operators F f and Gg . By introducing an
auxiliary variable y, the CS inverse problem can be formulated
as

min
x,y

1
2
∥c − 8x∥

2
+ α∥9y∥1, s.t. x = y (26)

where the CS measurement of x is denoted by c, x is the
vectorized image, 8 ∈ Rp×d is an under-sampling matrix, and
9 is the transformation matrix of filtering operations such as
Discrete Wavelet Transform or Discrete Cosine Transform.
In this experiment, 9 is replaced by a simple nonlinear
transformation T (·) as in [75] to maintain the sparsity of natural
images. Thus, the nonlinear operators F f (z) and Gg(·) become
(8⊤8 + βkI)−1(z + c) and T̃ (ST (T (·))), respectively, where

T̃ (·) is the inverse transformation of T (·) such that T̃ ◦ T =

I. In fact, we have also successfully avoided such matrix
inversions by linearizing quadratic terms in the Supplementary
Material, whereas existing ADMM-type unfolded networks
require computing this inversion. Thus, the computational
complexity and time cost of our networks can be further
reduced.

Datasets: We train our unfolded LADMM networks on
the same Train400 dataset as in [38], which contains a large
number of various scenarios. Its distribution of different scenes
is more balanced than Train91 [76] and DIV2K [77]. As for
testing, we utilize the classical BSD68 [78], Set11 [76],
and ImageNet-1k [79] datasets to evaluate reconstruction
performance.

For training, we initialize 8 as an orthogonal column matrix,
and x0 = 8⊤c as well as y0. For a fair comparison, we set
K = 20 for the compared algorithms. Then, by using the Adam
optimizer, we train all the methods to 400 epochs with a batch
size of 64. We also performed a simple ablation experiment
in the Supplementary Material to select loss functions for
compared algorithms, which shows that their original losses
can always lead to better performance than our Loss1. Thus,
we compared the results of their source code here.

In Fig. 7, the successive output visual images in layers 1–10
by A-TLADMM-Net with K = 10 are increasingly clearer.
Compared algorithms include ISTA-Net+ [75], DPDNN [80],

Fig. 7. Visualization and PSNR (dB) results of reconstructed boat images of
successive layers 1–10 for our A-TLADMM-Net at CS ratio γ = 10%.

GDN [81], SCSNet [70], DPA-Net [82], MAC-Net [83],
COAST [71], ISTA-Net++ [38], HSSE [72], LGSR [73], and
DPC-DUN [74]. Due to space limitations, some results are
shown in Tables VI and VII, and more detailed results can be
found in the Supplementary Material. As we can see, if we
train our A-TLADMM-Net with K =10, at least 0.2/0.9 dB
improvement can be achieved on the Set11/BSD68 datasets
compared with existing methods. If we train our A-TLADMM-
Net with K = 20, the reconstruction performance will be
further improved, which fully confirms the feasibility and
efficiency of our accelerated Trapezoid LADMM scheme.
From Tables VI and VII, our Trapezoid-inspired LADMM
networks consistently outperform the Euler-inspired LADMM
networks. By comparing ELADMM-Net with A-ELADMM-
Net or TLADMM-Net with A-TLADMM-Net, it is clear that
the extrapolation acceleration technology also improves the
performance of the LADMM networks, mainly because the
acceleration methods can search for better solution trajectories
in a larger function space. For a more intuitive comparison
with several well-known networks, Fig. 1 shows the results of
all the methods for the number of network parameters, time
cost, and PSNR at CS ratio γ = 30% in more detail.

E. CS on Speech Data
We also consider the application to another type of data,

compressed sensing for speech data, with the same problem
model as (26), but x is vectorized speech segments.

Datasets: We perform the same preprocessing as ADMM-
DAD [58] on two classical speech datasets, SpeechCom-
mands [84] (including 85 511 training samples and 4890 test
samples) and TIMIT [85] (including 144 188 training samples
and 52 712 test samples). All phonemes are sampled at 16 kHz
and we randomly take 70% and 30% of them for training and
testing, respectively.

For training, we choose Loss1 as the loss function and
train all the methods with K = 10 for 100 epochs by using
the Adam optimizer. We set Mean Square Error, MSE =

(1/|S|)
∑

(b,x∗)∈S ∥M(A, b; x0; 2) − x∗
∥

2 as a test criterion.
We consider two CS ratios p/d ∈ {25%, 40%} and use ADMM-
DAD, ISTA-Net+, and HSSE as baseline methods. The recovery
results are shown in Table VIII. We can find that the MSE
results of our networks are always lower than those of the
baselines, and our A-TLADMM-Net can obtain the lowest MSE
in all the cases. Furthermore, we plot the spectrograms of an
example in the TIMIT dataset, as shown in Fig. 8, from which
we can see that our networks distinguish more frequencies than
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TABLE VI
COMPARISON OF NATURAL IMAGE CS RESULTS IN TERMS OF PSNR (DB) WITH DIFFERENT SAMPLED RATIOS γ =10%, 20%, 30%, 40%, AND 50%

ON THE TEST DATASETS, BSD68, AND SET11

TABLE VII
COMPARISON OF NATURAL IMAGE CS RESULTS IN TERMS OF PSNR

(SSIM) AT DIFFERENT SAMPLED RATIOS γ =10%, 20%, 30%, AND
40% ON THE IMAGENET-1K DATASET

TABLE VIII

COMPARISON OF THE TEST MSE RESULTS (×10−2 AND ×10−4) ON THE
TIMIT AND SPEECHCOMMANDS DATASETS

AT CS RATIOS γ = 25%, 40%

ADMM-DAD. Moreover, (A-)TLADMM-Net further reduces
the noise of the reconstruction results of (A-)ELADMM-Net,
and A-TLADMM-Net preserves the most details.

F. CS MRI

To test the applicability of our methods, we perform our
(A-)ELADMM-Net and (A-)TLADMM-Net to resolve the CS
MRI. Following previous work [75], we set the matrix 8 in
Problem (26) to be the product of an under-sampling matrix and
the discrete Fourier transform. For each sampling ratio, we train
our networks separately with K = 10. We also performed a
simple ablation experiment in the Supplementary Material to
determine the loss functions for compared algorithms. Based
on it, we also compared the results of their source code here.
The accuracy and efficiency of reconstruction are measured
by PSNR and GPU time, and all the test results are shown in

Fig. 8. Comparison of the visualization results for CS at γ = 40% on an
example in the speech dataset, TIMIT. The reconstructed spectrograms of GT,
ADMM-DAD [58] and our four networks are displayed in sequence.

TABLE IX
COMPARISON OF TEST PSNR (DB) AND RUNTIME (S) RESULTS FOR CS

MRI ON A BRAIN DATASET. THE LAST COLUMN LISTS THE AVERAGE
GPU TIME TO RECONSTRUCT A 256 × 256 IMAGE

Table IX. We also provide the comparison of these methods at
the same time cost in the Supplementary Material.

Datasets: Our networks are trained on the same brain MR
images as in ADMM-Net [34] and ISTA-Net+ [75]. 100 and
50 images are used for training and testing, respectively.

At relatively high CS ratios, all our networks outperform
all the compared methods. Moreover, our networks always
perform much better than ADMM-Net in terms of runtime
and PSNR. Our TLADMM-Net enjoys better performance
than ELADMM-Net regardless of the same number of network
layers or time cost and our accelerated scheme (A-TLADMM-
Net) almost always reconstructs higher quality images than
other networks. At relatively low CS ratios, our TLADMM-Net
and A-TLADMM-Net are competitive with the reconstruc-
tion results of ISTA-Net+. Compared with ADMM-Net,
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Fig. 9. Comparison of PSNR/SSIM and error results on a brain image for
the CS MRI task at sampled ratio γ = 20%. (a)–(f) Reconstructed images
and errors of (a) ADMM-Net, (b) ISTA-Net+, (c) ELADMM-Net, (d) A-E-
LADMM-Net, (e) TLADMM-Net, and (f) A-TLADMM-Net, respectively.

(A-)TLADMM-Net reduces the reconstruction time by more
than two-thirds because ADMM-Net needs to solve the matrix
inversions. We further evaluate the structure similarity index
measure (SSIM) [86] between the network output xK and the
GT. Fig. 9 shows the reconstruction images and errors on a
brain image, which suggests that our A-TLADMM-Net can
recover better results in terms of both detail preservation and
reconstruction accuracy.

G. Summary of Experiments
By conducting the above experiments, we found that our

experimental results match our theoretical analysis. Moreover,
some common phenomena are summarized as follows.

1) Comparing the performance of our accelerated Euler and
nonaccelerated trapezoid LADMM schemes, we find that the
trapezoid structure can improve network performance better
than extrapolation acceleration technology.

2) In all inverse problem experiments, our accelerated
Trapezoid LADMM scheme almost always performs optimally,
which is also the best scheme we designed through theoretical
analysis. Considering both time consumption and data recovery
accuracy, the Trapezoid LADMM and accelerated Trapezoid
LADMM schemes are both good choices.

VI. CONCLUSION

In this article, we comprehensively designed the unfolded
LADMM networks from the perspective of DEs for solv-
ing various inverse problems. We clarified the connection
between existing unfolded networks and Euler discretization,
and proposed a more efficient Trapezoid LADMM scheme.
We find that good performance of unfolded networks requires
high-precision discretization and a large representation space.
Thus, we analyzed that the extrapolation accelerated Euler
scheme has a close connection with second-order DEs, thereby
expanding the representation space, and designed a better
accelerated Trapezoid LADMM scheme. Extensive inverse
problem experiments verified that our Trapezoid LADMM
schemes can be used to solve inverse problems better.
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