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Abstract— Many machine learning tasks such as structured
sparse coding and multi-task learning can be converted into an
equality constrained optimization problem. The stochastic alter-
nating direction method of multipliers (SADMM) is a popular
algorithm to solve such large-scale problems, and has been suc-
cessfully used in many real-world applications. However, existing
SADMMs fail to take into consideration an important issue in
their designs, i.e., protecting sensitive information. To address this
challenging issue, this paper proposes a novel differential privacy
stochastic ADMM framework for solving equality constrained
machine learning problems. In particular, to further lift the
utility in privacy-preserving equality constrained optimization,
a Laplacian smoothing operation is also introduced into our
differential privacy ADMM framework, and it can smooth out
the Gaussian noise used in the Gaussian mechanism. Then
we propose an efficient differentially private variance reduced
stochastic ADMM (DP-VRADMM) algorithm with Laplacian
smoothing for both strongly convex and general convex objectives.
As a by-product, we also present a new differentially private
stochastic ADMM algorithm with DP guarantees. In theory,
we provide both private guarantees and utility guarantees for
the proposed algorithms, which show that Laplacian smoothing
can improve the utility bounds of our algorithms. Experimental
results on real-world datasets verify our theoretical results and
the effectiveness of our algorithms.

Index Terms— Alternating direction method of multipliers
(ADMM), differential privacy, variance reduction, Laplacian
smoothing, utility guarantees.
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I. INTRODUCTION

MACHINE learning models are widely applied in many
real-world problems. However, the privacy of individ-

uals whose information is included in datasets should be
protected when the models are actually applied, especially
when utilizing sensitive data such as financial accounts and
health-care data. Therefore, it is important to design machine
learning algorithms that protect users’ privacy. As a rigorous
and standard concept of privacy, differential privacy (DP) [1]
can guarantee that the algorithm learns statistical information
of the population, but nothing about individual users. Empir-
ical risk minimization (ERM) has been widely studied for
achieving simultaneously privacy preserving and learning in
deterministic and stochastic settings. The DP methods can
be roughly classified into three categories. The first type
of approaches such as [2], [3] are to perturb the output of
non-private algorithms. The second type of methods such
as [4]–[6] are to perturb the objective function. The third type
of approaches such as [7] are to perturb gradients in first order
optimization algorithms. Most DP-ERM algorithms are based
on gradient perturbation, e.g., [8]–[12]. The theoretical and
numerical results in [11] and [12] have verified that Laplacian
smoothing can improve the utility of the DP methods for ERM
problems both numerically and theoretically.

Most differentially private methods mentioned above focus
on the ERM problem: F(x) = 1

n

�n
i=1 fi (x) + r(x), where x

is the model parameter, n is the number of training samples,
fi (·) is the loss on the i -th sample, and r(·) is a regularizer,
e.g., the �1-norm regularizer λ�x�1 with a regularization
parameter λ. However, many machine learning problems such
as graph-guided fused Lasso [13] and generalized Lasso [14]
are formulated as the following more complex optimization
problem with an equality constraint,

min
x∈Rd1 ,y∈Rd2

�
f (x) + r(y), s.t., Ax + By = c

�
(1)

where A ∈ R
d3×d1, B ∈ R

d3×d2 are two given matrices,
c ∈ R

d3 is a constant vector, f (x) := 1
n

�n
i=1 fi (x), each

fi (x) is a convex function, and r(·) is convex but possibly non-
smooth. The problem (1) covers a variety of machine learning
tasks such as structured sparsity problems (e.g., �Ax�1 for
graph-guided fused Lasso).

The alternating direction method of multipliers (ADMM)
is an efficient optimization method for solving Problem (1),
and many non-private ADMM algorithms including deter-
ministic ADMMs such as [16]–[18] and stochastic ADMMs
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TABLE I

COMPARISON OF THE STOCHASTIC ADMM ALGORITHMS WITH (�, δ)-DP. NOTE THAT DPADMM [15] WAS PROPOSED TO SOLVE GENERAL CONVEX
(GC OR NON-STRONGLY CONVEX) NON-SMOOTH ERM PROBLEMS, WHILE OUR DP-SADMM AND DP-VRADMM ARE FOR BOTH THE

μ-STRONGLY CONVEX (SC) AND GC PROBLEM (1). WE SUPPOSE THAT EACH COMPONENT FUNCTION fi IS l-LIPSCHITZ AND

g-SMOOTH. NOTE THAT τ < 1 IS A CONSTANT DEFINED IN THEOREM 3 BELOW. THE BOUNDS

IGNORE MULTIPLICATIVE DEPENDENCE ON log(1/δ)

such as [19]–[22] have been widely studied in both deter-
ministic and stochastic settings. There are many recently
proposed stochastic ADMMs including variance reduction
methods such as SAG-ADMM [19], SDCA-ADMM [20]
and SVRG-ADMM [21] and momentum accelerated methods
such as ASVRG-ADMM [22], [23], which have much faster
convergence speed than deterministic ADMMs, especially
for large-scale optimization problems. Chen and Lee [15],
Wang and Zhang [24] proposed privacy preserving stochastic
ADMM algorithms with gradient and objective perturbations,
respectively. However, the differentially private ADMM algo-
rithms [15], [24] can be only used to solve non-smooth ERM
problems with a simple constraint x = y, which can be viewed
as a special case of Problem (1). In addition, many differen-
tially private distributed ADMM algorithms such as [25], [26]
have been proposed for distributed machine learning problems.
To the best of our knowledge, there exists no differential
privacy stochastic ADMM for the more complex problem (1).

A. Motivations and Our Contributions

Many non-private stochastic ADMMs mentioned above
have been proposed to solve the equality constrained
minimization problem (1). However, they do not take into
consideration an important issue (i.e., the protection of sen-
sitive information in data) in their designs. Although several
DP-ERM methods such as [11], [12] leverage the Laplacian
smoothing (LS) [27] as post-processing to smooth the injected
Gaussian noise and improve the utility in privacy-preserving
ERM, there is still a lack of research in studying how to
introduce the LS operator into DP-ADMM for solving Prob-
lem (1). To address these issues, in this paper, we focus on
how to apply the privacy protection mechanism with a Lapla-
cian smoothing operator to solve the more general equality
constrained optimization problem (1). We first propose an
efficient differentially private ADMM framework for solving
Problem (1). Compared with DP-ERM methods such as [11],
the proposed DP-ADMM algorithms are non-trivial in the
extensions of both algorithm design and proving convergence
because of their essential differences of optimal conditions and
convergence criterion. In particular, different from the con-
vergence analysis of the non-DP stochastic ADMMs in [28]

and [21], the existence of the LS operator Q−1
ν in the proposed

algorithms brings a challenge for our theoretical analysis.
We summarize our main contributions below.
• We propose a general differentially private stochastic

ADMM framework with gradient perturbation for solving
Problem (1). To further enhance the utility, we also introduce
Laplacian smoothing into the proposed framework. To the
best of our knowledge, this is the first work to design
privacy-preserving stochastic ADMMs with Laplacian smooth-
ing for the equality constrained problem (1).

• By using the proposed framework, we design a novel
efficient differentially private stochastic ADMM algorithm
(called DP-VRADMM) with variance reduction for both
strongly convex (SC) and general convex (GC) objectives.
As a by-product, we also present a new differentially private
stochastic ADMM algorithm (called DP-SADMM) for both
SC and GC problems. Moreover, we prove that the proposed
algorithms including DP-VRADMM and DP-SADMM satisfy
(�,δ)-DP.

• Moreover, we also provide the theoretical guarantees for
the proposed algorithms, which are non-trivial extensions to
those of non-private stochastic ADMMs due to the intro-
duction of Laplacian smoothing. Our theoretical results are
listed in Table I, which match the near-optimal utility bounds
of the DP-ERM algorithm [1] for both SC and GC cases.
In particular, the theoretical results show that under the same
privacy budget, Laplacian smoothing can further improve the
utility bounds of our algorithms for both SC and GC cases.

• Finally, various experimental results on many real-world
datasets further verify our theoretical results, and show that
the proposed algorithms are efficient for solving Problem (1)
in the stochastic setting. Moreover, Laplacian smoothing can
improve the performance of many real-world applications.

II. PRELIMINARIES AND RELATED WORK

In this section, we first introduce some definitions of dif-
ferential privacy, and present some related work about ERM
algorithms with Laplacian smoothing and stochastic ADMMs.

A. Notation

Given a vector x ∈ R
d1 , �x� is the Euclidean norm, and

�x�1 = �
i |xi | is the �1-norm. For a matrix A, �A�2 is its
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spectral norm (i.e., the largest singular value of A), A† denotes
its pseudoinverse, and �x�2

G = x T Gx , where G ∈ R
d1×d1 is

a semi-positive definite matrix. Let (x∗, y∗) be the optimal
solution of Problem (1), and σ 2 denote the variance of injected
Gaussian noise.

Definition 1: A function f is l-Lipschitz if for ∀x1, x2,
it satisfies | f (x1) − f (x2)| ≤ l�x1 − x2�.

Definition 2: f is g-smooth if for ∀x1, x2, there exists g ≥ 0
such that f (x2)≤ f (x1) + ∇ f (x1)

T (x2 − x1) + g
2 �x2 − x1�2.

Definition 3: A function f is μ-strongly convex if for
∀x1, x2 and for any subgradient ∂ f (x1) at x1, it satisfies
f (x2) ≥ f (x1) + 	∂ f (x1), x2 − x1
 + μ

2 �x2 − x1�2.

B. Differential Privacy

Definition 4 ((�, δ)-DP [29]): A randomized mechanism
M : Dn → R with input domain Dn and output range R is
(�, δ)-differentially private ((�, δ)-DP) if for any two adjacent
data sets D,D� ∈ Dn differing in one entry and for any subset
of outputs O ⊆ R, it holds that

Pr[M(D) ∈ O] ≤ e� Pr[M(D�) ∈ O] + δ.

Definition 5 (�2-sensitivity [30]): For two adjacent data
sets D,D� ∈ Dn differing in one entry, the �2-sensitivity �2(q)
of a function q : Dn →R is defined as:

�2(q) = sup
D,D�

�q(D) − q(D�)�.

Definition 6 ((α, �)-RDP [31]): A randomized mechanism
M : Dn → R is �-Rényi differentially private of order α > 1,
i.e., (α, �)-RDP, if for any two adjacent data sets D,D� ∈ Dn

differing in one entry, it holds that

Dα(M(D)�M(D�)) � 1

α − 1
log E

�M(D)

M(D�)

�α

≤ �

where the expectation is taken over the randomness of M(D�).
Lemma 1 (From RDP to (�, δ)-DP [31]): If a randomized

mechanism M : Dn → R is (α, �)-RDP, it also satisfies (� +
log(1/δ)/(α − 1), δ)-DP for ∀δ ∈ (0, 1).

Lemma 2 ([32]): Given a function q : Dn → R, the
Gaussian mechanism M = q(D) + u satisfies (α, α �2

2
(q)/(2σ 2))-RDP, where u ∼ N (0, σ 2 I ). And the Gaussian
mechanism M̂ = q(D̂) + u, where u ∼ N (0, σ 2 I ) and D̂
is a subset of D using uniform sampling without replacement,
satisfies (α, 5ς2α�2

2 (q)/σ 2)-RDP given σ 2/�2
2 (q) ≥ 1.5 and

α ≤ log
�
1/(ς(1 + σ 2/ �2

2 (q)))
�
, where ς is the subsampling

rate.
Lemma 3 ([31]): For t randomized mechanisms M1, . . . ,

Mt , if M1 : D → R1 is (α, �1)-RDP, M2 : R1 × D →
R2 is (α, �2)-RDP, . . ., and Mt : Rt−1 × · · · × R1 ×
D → Rt is (α, �t )-RDP, then the composite mechanism
(M1,M2, . . . ,Mt ) satisfies (α, �1 + · · · + �t )-RDP.

C. Stochastic ADMM Algorithms

The ADMM is an effective optimization method [33] and
has shown attractive performance in a wide range of real-world
problems, such as big data classification [34]. Especially,
some machine learning problems such as graph-guided fused

Lasso [13] and generalized Lasso [14] can be formulated as
the problem (1) with an equality constraint Ax = y. The
augmented Lagrangian function of Problem (1) is:
Lβ(x, y, λ) = f (x) + r(y) + 	λ, Ax + By − c


+ β

2
�Ax + By − c�2.

Here β > 0 denotes a penalty parameter, and λ is a scaled
dual variable. Deterministic ADMM performs the following
update rules in an alternating fashion:

yt+1 = arg min
y

�
r(y) + β

2
�Axt + By − c + λt�2

�
,

xt+1 = arg min
x

�
f (x) + β

2
�Ax + Byt+1 − c + λt�2

�
,

λt+1 = λt + Axt+1 + Byt+1 − c.

When updating the variable x , its update step usually has
a high computational cost, especially when the number of the
samples (i.e., n) is very large. To tackle the issue of high
per-iteration complexity of deterministic ADMMs, Wang and
Banerjee [35], Suzuki [36] and Ouyang et al. [28] proposed
some online or stochastic ADMM algorithms. While their
update rules for yt+1 and λt+1 remain unchanged, their update
rule for xt+1 becomes as follows:

xt+1 = arg min
x

� 	
x,∇ fit(xt )


+ 1

2ηt
�x − xt�2

G

+β

2
�Ax + Byt+1 − c + λt�2

�
where we pick it uniformly at random from {1, . . . , n}, ηt ∝
1/

√
t is a step-size, and �x�2

G = x T Gx with a given positive
semi-definite matrix G, e.g., G � Id1 as in [21].

Analogous to stochastic gradient descent (SGD), stochastic
ADMMs use an unbiased stochastic gradient at each iteration.
However, all the algorithms have much slower convergence
rates than their deterministic counterparts [37]. This barrier is
mainly due to the variance introduced by the stochasticity of
the gradients. Besides, to guarantee convergence, they employ
a decaying step-size, which also impacts the convergence
rates. More recently, a number of variance reduced stochastic
ADMM algorithms such as SVRG-ADMM [21] have been
proposed and made exciting progress such as linear con-
vergence rates for SC problems. Especially, SVRG-ADMM
is attractive due to its low storage requirement compared
with [19], [20], and the variance of its gradients can be
gradually reduced and is much smaller than that of SGD and
its ADMM variants. Moreover, it uses a constant step-size and
consequently has faster convergence than stochastic ADMMs
such as [28].

D. Laplacian Smoothing for ERM Problems

In recent years, many effective differential privacy methods
such as [4], [9], [11] have been proposed for various ERM
problems. Moreover, Osher et al. [27] proposed a class of
smoothing variants of gradient descent (GD) and SGD, and
the proposed surrogates can dramatically reduce the variance,
have a larger step-size, and improve generalization accuracy.
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More recently, Wang et al. [11] proposed a Laplacian smooth-
ing (LS) variant to DP-SGD, which uses the LS operator to
effectively reduce the variance of DP-SGD. All the studies
show that Laplacian smoothing can smooth out the Gaussian
noise used in Gaussian mechanism, and can make the training
of the machine learning models more stable and enables the
trained models to generalize better. Inspired by the success of
all the methods, we propose the first DP stochastic ADMM
algorithm with Laplacian smoothing for solving the equality
constrained minimization problem (1).

III. DIFFERENTIALLY PRIVATE STOCHASTIC ADMMs
WITH LAPLACIAN SMOOTHING

In this section, we propose efficient differentially private
stochastic ADMM algorithms with Laplacian smoothing for
solving Problem (1). We first introduce the Laplacian smooth-
ing operator and present a new Laplacian smoothing differ-
entially private framework for ADMMs. Then we propose
a novel Laplacian smoothing differentially private variance
reduction stochastic ADMM (DP-VRADMM) algorithm for
both SC and GC problems. Finally, we present a new
Laplacian smoothing differentially private stochastic ADMM
(DP-SADMM) algorithm as a by-product.

A. Laplacian Smoothing

The Laplacian smoothing operation was recently shown
to be a good choice to reduce the variance of the injected
Gaussian noise used in the Gaussian mechanism [11], [12].
Inspired by the successful applications of Laplacian smoothing
for differentially private SGD [11] and federated learning [12],
we propose efficient Laplacian smoothing ADMM algorithms
for various equality constrained machine learning problems
such as graph-guided fused Lasso [13], generalized Lasso [14]
and graph-guided support vector machine (SVM) [28]. Below
we first introduce the Laplacian smoothing operator Q−1

ν . Let
Qν = Id1 − νL, where ν ≥ 0 is a constant, Id1 ∈ R

d1×d1 is an
identity matrix, and L ∈ R

d1×d1 is a discrete one-dimensional
Laplacian matrix with periodic boundary condition.

Qν =

⎡
⎢⎢⎢⎢⎢⎣

1 + 2ν −ν 0 · · · 0 −ν
−ν 1 + 2ν −ν · · · 0 0
0 −ν 1 + 2ν · · · 0 0
...

...
...

. . .
...

...
−ν 0 0 · · · −ν 1 + 2ν

⎤
⎥⎥⎥⎥⎥⎦.

It is clear that when ν = 0, Qν becomes an identity matrix.
That is, the proposed algorithms degenerate to the algorithms
without Laplacian smoothing when ν = 0. Given a vector
a ∈ R

d1 , the smoothed vector q is obtained by computing
q = Q−1

ν a, which is equivalent to a = Qνq = q − νφ ∗ q ,
where φ = [−2, 1, 0, . . . , 0, 1]T , Qν can be viewed as a
convolution matrix, and ∗ denotes the convolution operator.
Note that we use the fast Fourier transform (FFT) to efficiently
compute Q−1

ν a. That is,

q = Q−1
ν a = ifft

� fft(a)

1 − ν · fft(φ)

�
(2)

where fft and ifft denote the FFT and inverse FFT, respectively,
and we use the component-wise division.

B. Key Properties

In this subsection, we introduce some key properties of the
Laplacian smoothing operator Q−1

ν , which are very useful for
our convergence analysis. Below we give the properties.

Property 1: Q−1
ν � Id1 .

Proof: Let the eigenvalue decomposition of Q−1
ν be

Q−1
ν = U�U T , where � is a diagonal matrix with �ii =

1/[1 + 2ν − 2ν cos(2π i/d1)] (see Lemma 4 in [11]). We have

Q−1
ν − Id1 = U�U T − UU T

= U(� − Id1)U
T .

Apparently, �ii ≤ 1, and thus we obtain Q−1
ν − Id1 � 0. �

Property 2: Q−1
ν � Q−1

ν
�G Q−1

ν , where �G = Qν�G, �G =
γ Id1 − ηβ Q−1

ν ATA and γ = 1 + ηβ�AT A�2.
Proof:

Q−1
ν − Q−1

ν
�G Q−1

ν = Q−1
ν − �G Q−1

ν

= (1 − γ )Q−1
ν + ηβ Q−1

ν ATAQ−1
ν .

Since γ = 1 + ηβ�AT A�2, we have

Q−1
ν − Q−1

ν
�G Q−1

ν

= ηβ Q−1
ν ATAQ−1

ν − ηβ�AT A�2 Q−1
ν

= ηβ Q−1
ν (ATA − �AT A�2 Id1)Q−1

ν

+ ηβ(Q−1
ν − Id1)�AT A�2 Q−1

ν .

According to the definition of the spectral norm �·�2, we have
that Q−1

ν (ATA − �ATA�2 Id1)Q−1
ν � 0. Let the eigenvalue

decomposition of Q−1
ν be Q−1

ν = U�U T , where � is a
diagonal matrix with �ii = 1

1+2ν−2ν cos(2π i/d1)
, then we have

(Q−1
ν − Id1)�ATA�2 Q−1

ν = �AT A�2(U�U T − UU T )Q−1
ν

= �ATA�2U(� − Id1)U
T U�U T

= �ATA�2U(� − Id1)�U T .

It is clear that �ii ≤ 1, and then we obtain
(Q−1

ν − Id1)�ATA�2 Q−1
ν �0. Therefore, we can conclude that

Q−1
ν − Q−1

ν
�G Q−1

ν � 0. �
Property 3: (Q−1

ν )2 � Q−1
ν .

Proof: Since (Q−1
ν )2 = U�U T U�U T = U�2U T ,

we have

(Q−1
ν )2 − Q−1

ν = U(�2 − �)U T .

It is clear that �ii ≤ 1, and then we have �2
ii − �ii ≤ 0, thus

we obtain that (Q−1
ν )2 − Q−1

ν � 0. �

C. Differentially Private ADMMs With Laplacian Smoothing

Inspired by the stochastic ADMMs [28], [35], we design the
following update rules for our differentially private stochastic
ADMMs to solve Problem (1),

yt+1 = arg min
y

�
r(y) + β

2
�Axt + By − c + λt�2

�
,

xt+1 = arg min
x

�
	x, Gt 
 + 1

2η
�x − xt�2

G

+ β

2
�Ax + Byt+1 − c + λt�2

�
,

λt+1 = λt + Axt+1 + Byt+1 − c (3)
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Algorithm 1 DP-VRADMM for SC and GC Objectives
Input: Privacy parameters (�, δ), the penalty parameter β, the

step-size η, and the number of outer-iterations S.
Initialize: m, γ , �x0 = x̂0, �y0, λ1

0 = − 1
β (AT )†∇ f (�x0)

for the SC case or λ1
0 for the GC case, σ 2 =

c1l2 Sm ln(1/δ)/(n2�2).
1: for s = 1, 2, . . . , S do
2: �p = ∇ f (�xs−1);
3: xs

0 =�xs−1 for the SC case or xs
0 = x̂ s−1 for the GC case;

4: for t = 0, 1, . . . , m − 1 do
5: Choose Bt ⊆[n] of size b, uniformly at random;
6: �∇ fBt(xs

t )= 1
|Bt |
�

it ∈Bt
(∇fit (xs

t ) − ∇fit (�xs−1)) + �p;

7: ys
t+1 = arg miny

�
r(y) + β

2 �Axs
t + By − c + λs

t �2
�
;

8: xs
t+1 = xt − η

γ Q−1
ν (�∇ fBt(xs

t )+us
t +β AT(Axs

t + Bys
t+1−

c + λs
t )), where us

t ∼ N (0, σ 2 Id1);
9: λs

t+1 = λs
t + Axs

t+1 + Bys
t+1 − c;

10: end for
11: �xs = 1

m

�m
t=1xs

t , �ys = 1
m

�m
t=1ys

t ;
12: λs+1

0 = − 1
β (AT )†∇ f (�xs) (SC case)

13: or x̂ s = xs
m and λs+1

0 = λs
m (GC case);

14: end for
output x =�x S , y = �yS (SC case) or

x = 1
S

�S
s=1�xs , y = 1

S

�S
s=1�ys (GC case).

where λ is a Lagrangian multiplier (also called dual variable),
η is a step-size or learning rate, β > 0 is a penalty parameter,
�x�2

G = x T Gx with a given positive semi-definite matrix G =
γ Id1 −ηβ ATA and γ = 1+ηβ�ATA�2 as in [28], [38], and Gt

is a stochastic gradient operator by injecting Gaussian noise.
For instance, Gt = 1

n

�n
i=1∇ fi (xt )+ut is used for deterministic

DP-ADMMs, while stochastic gradients below are used for
stochastic DP-ADMMs, where ut is the Gaussian (or Laplace)
noise added for privacy. In this paper, we mainly focus on the
Gaussian mechanism for differentially private ADMMs.

In Problem (1), r(y) is a specific regularizer (e.g., the
graph-guided �1-norm regularizer) and is generally data
independence, and thus involves no privacy. Compared
with non-private ADMM algorithms including determinis-
tic ADMMs [33] and stochastic ADMMs [21], [28], [39],
[40], the update rule of yt , as well as that of λt , remains
unchanged.

Since Problem (1) indicates that f (x) is data-dependent,
we only perturb the gradient operator with respect to (w.r.t.) x
by injecting Gaussian noise, as shown in the update rule of xt

in (3). However, differentially private ADMMs have a much
lower utility than their non-private counterparts, as pointed
out by [27]. To mitigate this degradation, we propose two
efficient Laplacian smoothing differentially private stochastic
ADMM algorithms. More specifically, we design the following
update rule for differentially private ADMMs with Laplacian
smoothing to replace with that of xt in (3):

xt+1 = arg min
x

�
GT

t x + 1

2η
�x − xt�2

Qν�G
+ β

2
�Ax + Byt+1 − c + λt�2

�
(4)

where Gt is a differentially private gradient estimator (e.g.,
Gt = 1

b

�
it ∈Bt

∇ fit(xt ) + ut for stochastic ADMMs, and
Bt is a mini-batch of size b) with Gaussian noise, and�G = γ Id1 − ηβ Q−1

ν ATA. It is notable that there is the
main difference between the proposed update rules of xt for
differentially private stochastic ADMMs with and without
Laplacian smoothing. We introduce the Laplacian matrix Qν

into the proposed update rule in (4). That is, �x−xt�2
Qν�G in (4)

is used to replace �x − xt�2
G in (3). Moreover, we design the

semi-definite matrix �G = γ Id1 − ηβ Q−1
ν ATA in (4) instead

of G in (3). Therefore, the update rule of xt in (4) can be
reformulated as follows:
xt+1 = xt − η

γ
Q−1

ν

�Gt + β AT(Axt + Byt+1 − c + λt )
�
. (5)

Here, we introduce the Laplacian smoothing operator Q−1
ν

in (5) as post-processing to smooth the injected Gaussian
noise to improve the utility of differentially private stochastic
ADMM algorithms. Laplacian smoothing (LS) can be viewed
as a denoising technique that performs post-processing on
the Gaussian noise injected stochastic gradients. And the
update rule (5) can be calculated efficiently using FFT. Unlike
DP-LSSGD [11] for ERM problems, the proposed algorithms
also apply the Laplacian smoothing operator for the term
β AT(Axt + Byt+1 − c + λt ) in (5) for equality constrained
minimization problems. Therefore, the theoretical analysis of
privacy and utility guarantees for our algorithms is very chal-
lenging. Note that when ν = 0 (i.e., Q−1

ν = I ), the proposed
algorithms degenerate the differentially private ADMM algo-
rithms without Laplacian smoothing. When the variance σ = 0
and Q−1

ν = I , the proposed ADMM algorithms become their
non-private ADMM counterparts. In this sense, the non-private
stochastic ADMMs can be viewed as special cases of our algo-
rithms. As discussed above, the proposed differentially private
ADMM algorithms with Laplacian smoothing are simple to
implement, and only involve multiplying the gradient by the
inverse of a positive definite matrix as in (5), which can be
computed efficiently by FFT as in [27]. Below, we propose two
efficient differentially private stochastic ADMM algorithms
with Laplacian smoothing.

D. Laplacian Smoothing Differentially Private Stochastic
ADMM Algorithm With Variance Reduction

In this subsection, we propose an efficient differentially
private stochastic ADMM (DP-VRADMM) algorithm with
variance reduction and Laplacian smoothing for solving both
strongly convex and general convex problems (1). Like
SVRG [41] and DP-SVRG [9], which are much faster than
SGD algorithms and their DP variants, our DP-VRADMM
also has an outer-inner loop structure. That is, it is divided
into S outer-iterations, each consisting of m inner-iterations.

Similar to SVRG-ADMM [21], the differentially private
stochastic variance reduced gradient is defined as follows:

Gt = 1

|Bt |
�

it ∈Bt

(∇ fit(xs
t ) − ∇ fit(�xs−1)) + �p + us

t (6)

where us
t ∼ N (0, σ 2 Id1) is the injected Gaussian noise, σ is

defined in Theorem 1 below, �p = ∇ f (�xs−1) is the full gradient
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of f (·) at the snapshot point �xs−1. In fact, the Gaussian noise
us

t is from the first three terms in (6), as pointed out by [42].
Note that �∇ fBt(xs

t ) = 1
|Bt |
�

it ∈Bt
(∇ fit(xs

t ) − ∇ fit(�xs−1)) + �p
is the mini-batch version of the stochastic variance reduced
gradient in [41], and is also an unbiased approximation to the
true gradient ∇ f (xs

t ). As analyzed in our previous work [22],
[23], the variance reduction gradients can explicitly reduce the
variance of SGD and its variants including our differentially
private stochastic ADMM proposed below, and their variance
approaches zero as the number of iterations increases.

The detailed update rules of our DP-VRADMM algorithm
for solving SC and GC objectives are outlined in Algorithm 1.
The main differences of our DP-VRADMM for SC and GC
problems are listed as follows:

• For the SC problem, the dual variable λs
0 for each epoch

of DP-VRADMM (i.e., Algorithm 1) is initialized as:
λs

0 = − 1
β (AT )†∇ f (�xs−1), while the variable is initialized

as: λs
0 = λs−1

m for the GC problem as in [21] and [23].
Moreover, the starting point of each epoch is set to the
snapshot point (i.e., xs

0 = �xs−1) for SC problems, while
xs

0 = xs−1
m for GC problems.

• The outputs of DP-VRADMM (i.e., Algorithm 1) for SC
problems are �x S and �yS , while x = 1

S

�S
s=1�xs and y =

1
S

�S
s=1�ys are for the GC case.

E. Laplacian Smoothing Differentially Private Stochastic
ADMM Algorithm

In this subsection, we also present a new differentially pri-
vate stochastic ADMM (DP-SADMM) algorithm with Lapla-
cian smoothing as a by-product, as shown in Algorithm 2. Note
that the update rules for yt and λt are identical to those of our
DP-VRADMM. In contrast, the update rule of xt becomes

xt+1 = xt − ηt+1

γ
Q−1

ν

�Gt + β AT(Axt + Byt+1 − c + λt )
�
(7)

where ηt+1 is a decaying step-size, and the differentially
private stochastic gradient Gt is defined as: Gt = 1

b�
it ∈Bt

∇ fit(xt ) + ut , where ut ∼ N (0, σ 2 Id1) is the injected
Gaussian noise as in Theorem 2 below. It is clear that the gradi-
ent used in DP-SADMM is the differentially private stochastic
gradient, while that of DP-VRADMM is the differentially
private stochastic variance reduced gradient in (6). Thus,
DP-VRADMM has better performance than DP-SADMM.

Different from DP-VRADMM (i.e., Algorithm 1), which
has a constant step-size, the step-size of DP-SADMM should
be decaying as the number of iterations increases. More
specifically, for the GC case, the step-size of DP-SADMM is
set to ηt+1 = 1/

√
t + 1, and its outputs are x = (1/T )

�T
t=1xt

and y = (1/T )
�T

t=1yt . For the SC case, its step-size is set
as follows: ηt+1 = 2γ �Qν�2/(μ(t + 1)), and the outputs are
set to the non-uniform averaging to improve convergence, i.e.,
x =�T

t=1txt/(
�T

t=1t) and y =�T
t=1tyt/(

�T
t=1t).

F. Privacy Analysis

We first prove that the proposed DP-VRADMM algorithm
with Laplacian smoothing satisfies (�, δ)-DP.

Algorithm 2 DP-SADMM for SC and GC Objectives
Input: Privacy parameters (�, δ), the penalty parameter β, and

the number of iterations T .
Initialize: x0, λ0, and an initial step-size η1.
1: σ 2 = 20αT l2/(θ�n2);
2: for t = 0, 1, . . . , T − 1 do
3: Choose Bt ⊆[n] of size b, uniformly at random;
4: ∇ fBt(xt ) = 1

b

�
it ∈Bt

∇ fit(xt );
5: yt+1 = arg miny

�
r(y) + β

2 �Axt + By − c + λt�2
�
;

6: xt+1 = xt − ηt+1
γ Q−1

ν (∇ fBt(xt)+ut +β AT(Axt + Byt+1−
c + λt )), where ut ∼ N (0, σ 2 Id1);

7: λt+1 = λt + Axt+1 + Byt+1 − c;
8: ηt+1 = 2γ �Qν�2

μ(t+1) (SC case) or ηt+1 = 1√
t+1

(GC case);
9: end for

output x = 1�T
t=1 t

�T
t=1 txt , y = 1�T

t=1 t

�T
t=1 tyt (SC case)

or x = 1
T

�T
t=1 xt , y = 1

T

�T
t=1 yt (GC case).

Theorem 1 (Privacy guarantees for DP-VRADMM):
Suppose that each component function fi is l-Lipschitz. For
the privacy budget � ≤ c1Sm/n2 with some constant
c1 and δ > 0, DP-VRADMM satisfies (�, δ)-DP with
σ 2 = c2l2Sm ln(1/δ)/(n2�2), where c2 is a constant.

The detailed proofs of Theorem 1, other theorems and
lemmas (except Lemma 4) below are provided in the Sup-
plementary Material. Moreover, we also present the privacy
guarantee for DP-SADMM.

Theorem 2 (Privacy Guarantees for DP-SADMM):
Suppose that each component function fi is l-Lipschitz.
For any δ > 0 and privacy budget �, DP-SADMM
is (�, δ)-DP with σ 2 = 20αT l2/(θ�n2), where
α = log(1/δ)/((1−θ)�)+1, if there exists θ ∈ (0, 1) such that
α≤ log(θ�n3/(5αb3T + θ�bn2)) and 5αb2T/(θ�n2) ≥ 1.5.

IV. THEORETICAL GUARANTEES

In this section, we theoretically analyze the utility guar-
antees and oracle gradient complexities for the proposed
DP-VRADMM and DP-SADMM algorithms, respectively.
Different from general ERM problems, the solution of
Problem (1) needs to satisfy the constraint Ax + By = c.
Following [21], we introduce the following function R(x, y)
as a convergence criterion for the constrained optimization
problem (1), which is the same as the variational inequality
used in [43].

R(x, y) := f (x) − f (x∗) − ∇ f (x∗)T(x − x∗)
+ r(y) − r(y∗) − r �(y∗)T(y − y∗)

where r �(y) denotes the (sub)gradient of r(·) at y. Moreover,
R(x, y) ≥ 0 for all x ∈ R

d1 and y ∈ R
d2 . We first give the

utility guarantees for our DP-VRADMM.
Proof Sketch: Due to the introduction of the LS operator

Q−1
ν , we cannot follow the theoretical framework of existing

stochastic ADMMs such as STOC-ADMM [28] and SVRG-
ADMM [21]. Thus, we introduce the idea of variable substitu-
tion, and combine it with some key properties in Section 3.2 to
resolve the issue in Lemma 4 below.
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• To estimate the one-iteration upper bound of the variable
x in Lemma 4, we split the proof into three steps. Firstly,
we construct a variable substitution zs

t = Qνxs
t and combine

with the update rules of Algorithm 1. Secondly, by using both
the variance upper bound and noise upper bound, we estimate
the perturbation upper bound in the perturbation step. Finally,
we combine the analysis with the key properties of the LS
operator in Section 3.2 to obtain the one-iteration upper bound
of x .

• To estimate the one-iteration upper bound of the variable
y, the upper bound and the detailed derivation are given in
Lemma 12 in the Supplementary Material.

• We combine the one-epoch upper bounds of the variables
x and y with the privacy bound from Theorem 1 and derive our
main result in Theorem 3. The detailed proofs can be found
in the Supplementary Material.

A. Utility Bounds of DP-VRADMM

In this subsection, we analyze the utility bounds and gra-
dient complexities of our DP-VRADMM for both strongly
convex and general convex problems. Before presenting our
main results, we give the following core lemma, which is
applicable in both the SC and GC cases.

Lemma 4 (One-Epoch Analysis for x): Suppose the step-
size η ≤ 1

2g in Algorithm 1, we have the following result

E
� 1

m

m−1�
t=0

((1 − 4gηα(b))( f (xs
t+1) − f (x∗)

− 	∇ f (x∗), xs
t+1 − x∗
) − 	AT ϕs

t , x∗ − xs
t+1
)

�
≤ 4gηα(b)( f (�xs−1) − f (x∗) − 	∇ f (x∗),�xs−1 − x∗
)

+ 4gηα(b)

m
( f (xs

0) − f (x∗) − 	∇ f (x∗), xs
0 − x∗
)

− 4gηα(b)

m
E[ f (xs

m) − f (x∗) − 	∇ f (x∗), xs
m − x∗
]

+ 1

2mη
E[�x∗ − xs

0�2�G − �x∗ − xs
m�2�G ] + τηd1σ

2

where �G = Qν�G = γ Qν − ηβATA and ϕs
t = β(λs

t+1 − λ∗).
Proof: • Update steps: The optimal condition of the

x-subproblem (4) is

Gt + 1

η
Qν�G(xs

t+1 − xs
t )

+ β AT (Axs
t+1 + Bys

t+1 − c + λs
t ) = 0 (8)

where Gt = �∇ fBt(xs
t ) + us

t = 1
|Bt |
�

it ∈Bt
(∇ fit(xs

t ) −
∇ fit(�xs−1)) + �p + us

t , η is a constant for SVRG-ADMM, and�G = γ Id1 − ηβ Q−1
ν ATA. Let �G = Qν�G, then we have

�G = Qν�G = γ Qν − ηβATA

= γ Qν − ηβ�AT A�2 Id1 + ηβ�AT A�2 Id1 − ηβATA

� Id1 (9)

where �G � Id1 holds due to the fact that γ Qν −
ηβ�AT A�2 Id1 � Id1 (because of γ = 1 + ηβ�AT A�2
and the definition of Qν) and ηβ�AT A�2 Id1 − ηβATA �
0 (because of the definition of the spectral norm � · �2).

Since λs
t+1 = λs

t + Axs
t+1 + Bys

t+1 − c as in Step 9 in
Algorithm 1, the optimal condition (8) is rewritten as follows:

Gt + 1

η
�G(xs

t+1 − xs
t ) + β AT λs

t+1 = 0. (10)

Let zs
t = Qνxs

t , then xs
t = Q−1

ν zs
t . Under the assumption

that f is g-smooth, we have

f (xs
t+1)

≤ f (xs
t ) + 	∇ f (xs

t ), Q−1
ν (zs

t+1 − zs
t )
 + g

2
�zs

t+1 − zs
t �2

Q−2
ν

= f (xs
t ) + 	�∇ fBt (xs

t ) + us
t , Q−1

ν (zs
t+1 − zs

t )

+ g

2
�zs

t+1 − zs
t �2

Q−2
ν

+ 	∇ f (xs
t ) − �∇ fBt (xs

t ) − us
t , Q−1

ν (zs
t+1 − zs

t )

1�≤ f (xs

t ) + 	�∇ fBt (xs
t ) + us

t , Q−1
ν (zs

t+1 − zs
t )


+ g

2
�zs

t+1 − zs
t �2

Q−2
ν

+ 1 − ηg

2η
�zs

t+1 − zs
t �2

Q−1
ν

+ η

2(1 − ηg)
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν

= f (xs
t ) + 	�∇ fBt (xs

t ) + us
t , x∗ − Q−1

ν zs
t 


+ g

2
�zs

t+1 − zs
t �2

Q−2
ν

− 	Gt , x∗ − Q−1
ν zs

t+1

+ η

2(1 − ηg)
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν

+ 1 − ηg

2η
�zs

t+1 − zs
t �2

Q−1
ν

2�≤ f (xs
t ) + 	�∇ fBt (xs

t ) + us
t , x∗ − xs

t 

+ 1

η
	�G Q−1

ν (zs
t+1 − zs

t ), x∗ − Q−1
ν zs

t+1


+ 	β AT λs
t+1, x∗ − Q−1

ν zs
t+1
 + 1

2η
�zs

t+1 − zs
t �2

Q−1
ν

+ η

2(1 − ηg)
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν
. (11)

Above, 1� holds due to the Young’s inequality, and 2� holds
due to the optimal condition (10) and �zt+1−zt�2

Q−2
ν

≤ �zt+1−
zt�2

Q−1
ν

, which can be obtained by Property 3.

• Perturbation Step: Given xs
t , taking expectation w.r.t. Bt

and us
t , we have

E

�
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν

�
= E

�
�∇ f (xs

t ) − �∇ fBt (xs
t )�2

Q−1
ν

+ �us
t �2

Q−1
ν

�
≤ E

�
�∇ f (xs

t ) − �∇ fBt (xs
t )�2 + �us

t �2
Q−1

ν

�
≤ 4gα(b)[ f (xs

t ) − f (x∗) − 	∇ f (x∗), xs
t +�xs−1 − 2x∗


+ f (�xs−1) − f (x∗)] + τd1σ
2 (12)

where τ = 1
d1

�d1
i=1

1
1+2ν−2ν cos(2π i/d1) , the first inequality

holds due to Property 1, and the second inequality holds
due to the variance upper bound in Lemma 10 and the
estimate of E[�us

t �2
Q−1

ν
] in Lemma 7, which are provided in

the Supplementary Material.
• One-Iteration Upper Bound: Using the above analysis

with ηg ≤ 1/2, taking expectation from both sides of the
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inequality (11) w.r.t. Bt and us
t , we have

E[ f (xs
t+1)]

≤ E
�

f (xs
t ) + 	�∇ fBt (xs

t ) + us
t , x∗ − xs

t 

�

+ E

�
1

η
	�G Q−1

ν (zs
t+1 − zs

t ), x∗ − Q−1
ν zs

t+1

�

+ E
� η

2(1 − ηg)
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν

+ 1

2η
�zs

t+1 − zs
t �2

Q−1
ν

+ 	β AT λs
t+1, x∗ − Q−1

ν zs
t+1


�
1�≤ E

�
f (x∗) + 1

2η
(�x∗ − Q−1

ν zs
t )�2�G − �x∗ − Q−1

ν zs
t+1�2�G)

�
+ E
� η

2(1 − ηg)
�∇ f (xs

t ) − �∇ fBt (xs
t ) − us

t �2
Q−1

ν

�
+ E

�
	β AT λs

t+1, x∗ − xs
t+1


�
2�≤ E

�
f (x∗) + 1

2η
(�x∗ − Q−1

ν zs
t )�2�G − �x∗ − Q−1

ν zs
t+1�2�G)

�
+ E

�
	β AT λs

t+1, x∗ − xs
t+1


�
+ 4gηα(b)[ f (xs

t ) − f (x∗) − 	∇ f (x∗), xs
t − x∗


+ f (�xs−1) − f (x∗) − 	∇ f (x∗),�xs−1 − x∗
] + ητd1σ
2

where 1� holds due to the convexity of f and E[�∇ fBt (xs
t ) +

us
t ] = ∇ f (xs

t ), i.e., E[	�∇ fBt (xs
t ) + us

t , x∗ − xs
t 
] ≤ f (x∗) −

f (xs
t ) and Property 4 in the Supplementary Material with

w1 = Q−1
ν zs

t+1, w2 = Q−1
ν zs

t , w3 = x∗ and �zs
t+1 − zs

t �2
Q−1

ν
≤

�Q−1
ν (zs

t+1 − zs
t )�2�G (which is obtained by using Property 2);

2� uses the inequality (12) and the assumption η ≤ 1
2g .

Using the optimality condition (i.e., ∇ f (x∗) + β AT λ∗ = 0)
of Problem (1) and ϕs

t = β(λs
t+1 − λ∗), we have�

β AT λs
t+1, x∗ − xs

t+1

�
= 	∇ f (x∗), xs

t+1 − x∗
+ �β AT λ∗, xs
t+1 − x∗�

+
�
β AT λs

t+1, x∗ − xs
t+1

�
=
�
∇ f (x∗), xs

t+1 − x∗
 + 	AT ϕs
t , x∗ − xs

t+1

�
.

Therefore, we have

E[ f (xs
t+1) − f (x∗) − 	∇ f (x∗), xs

t+1 − x∗

− 	AT ϕs

t , x∗ − xs
t+1
]

≤ 4gηα(b)[ f (xs
t ) − f (x∗) − 	∇ f (x∗), xs

t − x∗

+ f (�xs−1) − f (x∗) − 	∇ f (x∗),�xs−1 − x∗
]
+ 1

2η
E

�
�x∗ − xs

t �2�G − �x∗ − xs
t+1�2�G

�
+ τηd1σ

2.

Summing over t = 0, . . . , m − 1 and dividing by m, we have

E
� 1

m

m−1�
t=0

( f (xs
t+1) − f (x∗) − 	∇ f (x∗), xs

t+1 − x∗


− 	AT ϕs
t , x∗ − xs

t+1
)
�

≤ 4gηα(b)

m

m−1�
t=0

�
f (xs

t ) − f (x∗) − 	∇ f (x∗), xs
t − x∗


+ f (�xs−1) − f (x∗) − 	∇ f (x∗),�xs−1 − x∗
�

+ 1

2mη
E

�
�x∗ − xs

0�2�G − �x∗ − xs
m�2�G

�
+ τηd1σ

2. (13)

Subtracting E[ 4gηα(b)
m

�m−1
t=0 ( f (xs

t+1) − f (x∗) −
	∇ f (x∗), xs

t+1 − x∗
)] from both sides of the inequality
(12), we obtain

E
� 1

m

m−1�
t=0

((1 − 4gηα(b))( f (xs
t+1) − f (x∗)

− 	∇ f (x∗), xs
t+1 − x∗
) − 	AT ϕs

t , x∗ − xs
t+1
)

�
≤ 4gηα(b)

�
f (�xs−1) − f (x∗) − 	∇ f (x∗),�xs−1 − x∗


�
+ 4gηα(b)

m

�
f (xs

0) − f (x∗) − 	∇ f (x∗), xs
0 − x∗
�

− 4gηα(b)

m
E
�

f (xs
m) − f (x∗) − 	∇ f (x∗), xs

m − x∗
�
+ 1

2mη
E

�
�x∗ − xs

0�2�G − �x∗ − xs
m�2�G

�
+ τηd1σ

2.

This completes the proof. �
Note that Lemma 4 is our key intermediate result for the

utility guarantees of DP-VRADMM. As shown in the proof of
Lemma 4, by using the idea of variable substitution and some
properties of Qν , we manage to get rid of some extra terms
introduced by Qν and obtain the desired utility bounds.

Furthermore, we can obtain the one-epoch upper bound
by using Lemmas 4 and 12 in the Supplementary Material,
and combine it with the privacy bound from Theorem 1 to
derive our main results in Theorems 3 and 4, respectively. The
detailed proofs are provided in the Supplementary Material.
The utility guarantee of DP-VRADMM for general convex
objectives is given in the following theorem.

Theorem 3 (DP-VRADMM for GC Problems): Suppose
that f (·), r(·) are convex, and each component function fi

is l-Lipschitz and g-smooth. Given �, δ > 0, σ is defined in
Theorem 1. If we choose η = �( 1

g ) ≤ 1
2g and m = �(g),

then the following result holds for S = O( n�

l
√

τd1 log(1/δ)
),

E[R(x, y) + ζ�Ax̄ + B ȳ − c�] ≤ O
� l
 

τd1 log(1/δ)

�n

�
where τ = 1

d1

�d1
i=1

1
1+2ν−2ν cos(2π i/d1)

, and ζ > 0 is a given
constant. The overall gradient complexity of DP-VRADMM for
GC problems is O� gn�

l
√

τd1 log(1/δ)

�
.

When ν = 0, DP-VRADMM becomes the algorithm with-
out Laplacian smoothing, and its utility bound is given below.

Corollary 1 (Without Laplacian smoothing): Using the
same notation and setting as in Theorem 3 with ν = 0,
we have

E[R(x̄, ȳ) + ζ�Ax̄ + B ȳ − c�] ≤ O
� l
 

d1 log(1/δ)

�n

�
.

Remark 1: Using the property in [27], we have τ =
1+pd1

(1−pd1 )
√

4ν+1
→ 1√

4ν+1
as d1 → ∞, where 0 < p =

2ν+1−√
4ν+1

2ν < 1. This means that τ is rapidly decreasing with
the increasing of d1 and ν, and it is much smaller than 1. That
is, the utility bound in Theorem 3 is tighter than that in Corol-
lary 1, which means that Laplacian smoothing can improve the
utility bound in theory. In practice, our experimental results
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also verify the efficiency of the smoothing operator. As we
will show in Remark 2, compared with DP-SADMM under
the same private budget (�, δ), DP-VRADMM can reduce the
gradient complexity from O( n2�2

τd1l2 log(1/δ)
) to O( gn�

l
√

τd1 log(1/δ)
)

for GC problems. The utility bound of DP-VRADMM is

O(
l
√

τd1 log(1/δ)

�n ), which matches the optimal utility bound of
DP-ERM [1], [9] for the GC case.

Below we also analyze the utility bound of DP-VRADMM
for strongly convex objectives.

Theorem 4 (DP-VRADMM for SC Problems): Suppose
that f is μ-strongly convex, r is convex, and each component
function fi is l-Lipschitz and g-smooth, and A has full row
rank. Given �, δ > 0, σ is defined in Theorem 1. If we choose
η = �( 1

g ) < 1
16g , S = O(log( n2�2μ

d1l2 log(1/δ)
)), and sufficiently

large m so that they satisfy the inequality

γ �Qν�2

μ�mη
+ 4gη(m + 1)α(b)

�m
+ g

β�ρmin(AAT )m
<

1

2

where � = 1 − 4gηα(b), then the following result holds

E[R(x̄, ȳ)] ≤ O
�τd1l2 log(n) log(1/δ)

μ�2n2

�
.

Furthermore, the total gradient complexity of DP-VRADMM
is O((n + g/μ) log n�μ

d1
).

Theorem 4 shows that DP-VRADMM has a significantly
faster convergence rate than DP-SADMM (i.e., a linear conver-
gence rate), while DP-SADMM only attains a sub-linear rate
(see Theorem 6 below). As discussed in Remark 1, the utility
bound of Theorem 4 also matches the optimal utility bound of
DP-ERM [1], [9] for the SC case. And DP-VRADMM with
Laplacian smoothing has a much better upper bound for SC
problems, which also verifies the importance of the Laplacian
smoothing operator.

B. Utility Bounds for DP-SADMM

We also analyze the utility guarantees of DP-SADMM for
both SC and GC objectives. Before presenting our main results
for DP-SADMM, we give the following core lemma, which
is applicable in both SC and GC cases.

Lemma 5: For Algorithm 2, we have the following result,

E
�

f (xt+1) − f (x∗) + 	∇ f (x∗), x∗ − xt+1

− 	AT ϕt , x∗ − xt+1


�
≤ 1

2ηt+1
E
��x∗ − xt�2�G − �x∗ − xt+1�2�G

�
+ ηt+1

2(1 − ηt+1g)

�
l2/b + d1τσ 2�

where �G = Qν�G = γ Qν− ηt+1βATA and ϕt = β(λt+1− λ∗).
Note that the proof of Lemma 5 is similar to that of

Lemma 4. Due to page limit, we provide the detailed proof of
Lemma 5 in the Supplementary Material.

Below we first give the utility bound of DP-SADMM for
general convex problems.

Theorem 5 (DP-SADMM for GC Problems): Suppose that
f, r are convex, and each component function fi is l-Lipschitz
and g-smooth. Given �, δ > 0, under the same conditions in

Fig. 1. Comparison of DP-VRADMM with different Laplacian smoothing
coefficients on the two datasets. Top: Objective gap vs. budget; Bottom: Test
accuracy vs. budget.

TABLE II

SUMMARY OF DATASETS AND REGULARIZATION

PARAMETERS USED IN OUR EXPERIMENTS

Theorem 2 on σ and α, if we choose ηt+1 = 1/
√

t + 1 =
O(1/

√
t) ≤ 1/(2g) and T = O(�2n2/(τd1l2 log(1/δ))), the

output x =�T
t=1xt/T , y =�T

t=1yt/T satisfies the following
utility bound,

E

�
R(x, y) + ζ�Ax̄ + B ȳ − c�

�
≤ O

� l
 

τd1 log(1/δ)

�n

�
.

Furthermore, we also analyze the utility bound of
DP-SADMM for strongly convex objectives as follows.

Theorem 6 (DP-SADMM for SC Problems): Suppose that
f is μ-strongly convex, r is convex, and each component
function fi is l-Lipschitz and g-smooth. Given �, δ > 0,
under the same conditions in Theorem 2 on σ and α, if
we choose ηt+1 = 2γ �Qν�2/(μ(t + 1)) = O(1/(μt)) and
T = O(μ�2n2/(γ �Qν�2τd1l2 log(1/δ))), the output x =
1/(
�T

t=1 t)
�T

t=1txt , y = 1/(
�T

t=1 t)
�T

t=1tyt satisfies the
following utility bound,

E[R(x, y)] ≤ O
�τd1l2 log(n) log(1/δ)

μ�2n2

�
.

Remark 2: As discussed in Remark 1, by using Laplacian
smoothing in our DP-SADMM algorithm, the upper bounds in
Theorems 5 and 6 are also improved by a factor τ , which is
much smaller than 1. Moreover, the utility bounds of Theorems
5 and 6 also match the optimal utility bound of DP-ERM [1],
[9] for both GC and SC cases.
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Fig. 2. Comparison of all the algorithms for solving GC graph-guided fused Lasso problems on the four datasets. Top: Objective gap vs. DP budget, �;
Bottom: Test accuracy vs. DP budget, �.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
DP-VRADMM and DP-SADMM algorithms for solving
the general convex (GC) graph-guided fused Lasso and
strongly convex (SC) graph-guided logistic regression prob-
lems. We report the experimental results for both GC and SC
problems on some real-world datasets, as shown in Table II.
All the datasets can be downloaded from the LIBSVM Data
website.1 All the experiments were performed on a PC with
an Intel Core i7-7700 3.6GHz and 32GB RAM.

A. Effectiveness of Laplacian Smoothing

In this subsection, we first test the effectiveness of the
Laplacian smoothing operator used in our DP-VRADMM
algorithm for solving structured sparse coding problems.
We report the experimental results of our DP-VRADMM with
different Laplacian smoothing coefficients (e.g., ν = 0, 2, 3)
for solving the following graph-guided fused Lasso problem,

min
x

�1

n

n�
i=1

fi (x) + λ1�y�1, s.t., Ax = y
�

where fi is the logistic loss function on the feature-label
pair (ai , bi ), i.e., log(1 + exp(−bi aT

i x)), and λ1 ≥ 0 is
a regularization parameter, which is given in Table II. The
matrix A is set to A = [φ; I ] as in [28] and [21], where
φ is the sparsity pattern of the graph obtained by sparse
inverse covariance selection [44]. Note that when ν = 0,
DP-VRADMM becomes its variant without Laplacian smooth-
ing, i.e., a common differentially private variance reduced
stochastic ADMM algorithm.

Fig. 1 plots the objective gap (i.e., the objective value
minus the minimum value) and the test accuracy of our
DP-VRADMM with different LS coefficients on covtype and

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

w8a. All the results show that DP-VRADMM with ν = 2 and
ν = 3 performs significantly better than DP-VRADMM with
ν = 0 (i.e., DP-VRADMM without Laplacian smoothing) in
terms of convergence quality and test accuracy, which shows
the importance of Laplacian smoothing for differentially pri-
vate stochastic ADMMs. In fact, there are similar experimental
phenomena for the proposed DP-SADMM algorithm and other
structured sparse coding problems. This verifies that Laplacian
smoothing can smooth the injected Gaussian noise in the
differentially private stochastic ADMMs, greatly reduce the
impact of the noise to improve their convergence and enable
the learned model to generalize better.

B. Graph-Guided Fused Lasso

We also evaluate the performance of our DP-VRADMM
and DP-SADMM for solving the GC graph-guided
fused Lasso problem. Note that SVRG-ADMM [21] and
STOC-ADMM [28] are used as non-private baselines, and
our DP-VRADMM and DP-SADMM are their differentially
private variants, respectively. The regularization parameter λ1
is given in Table II. Moreover, we set m = 2n/b and γ = 1 as
in [21]. Fig. 2 shows the experimental results (including
the objective gap and test accuracy) of all the methods
with different private budgets � ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1}
and δ = 5 × 10−4 on the four datasets. It is clear that
DP-VRADMM performs much better than DP-SADMM in
terms of both convergence quality and test accuracy, which
verified our theoretical results that the former has a faster
convergence rate than the latter.

C. Graph-Guided Logistic Regression

Moreover, we evaluate the performance of our
DP-VRADMM and DP-ADMM algorithms for solving
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Fig. 3. Comparison of all the algorithms for solving SC graph-guided logistic regression problems on the four datasets. Top: Objective gap vs. DP budget,
�; Bottom: Test accuracy vs. DP budget, �.

Fig. 4. Comparison of all the algorithms for solving Lasso problems on the four datasets. Left: Objective gap vs. DP budget, �; Right: Test accuracy vs. DP
budget, �.

the following SC graph-guided logistic regression problem,

min
x

� 1

n

n�
i=1

�
fi (x) + λ2

2
�x�2

�
+ λ1�y�1, s.t. Ax = y

�

where λ1 ≥ 0 and λ2 ≥ 0 are two regularization parame-
ters, which are given in Table II. From Fig. 3, we can see
that DP-VRADMM also performs significantly better than
DP-SADMM in terms of both convergence quality and test
accuracy for the SC problem.

D. Lasso

Finally, we conduct some experiments to compare our
DP-VRADMM and DP-SADMM methods with the recently
proposed method, DP-ADMM [15], for solving the Lasso

problem (the problem (1) with the constraint x = y,
minx

� 1
n

�n
i=1 fi (x) + λ1�y�1, s.t., x = y

�
). When the reg-

ularization parameter is set to 10−4 (i.e., λ1 = 10−4), the
experimental results are shown in Fig. 4. All the results show
that our DP-VRADMM and DP-SADMM methods signif-
icantly outperform DP-ADMM in terms of both objective
gap and test accuracy, which further verified the importance
of Laplacian smoothing for differentially private ADMMs.
Moreover, our DP-VRADMM method performs much better
than other methods including DP-ADMM and DP-SADMM.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient differentially
private stochastic ADMM framework for solving equal-
ity constrained minimization problems. Then we introduced
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Laplacian smoothing into our private stochastic ADMM algo-
rithms to smooth out the injected noise. Moreover, we pro-
posed a new differentially private variance reduction stochastic
ADMM (DP-VRADMM) algorithm for both SC and GC
objectives. As a by-product, we also presented a new differ-
entially private stochastic ADMM (DP-SADMM) algorithm.
Moreover, we provided the theoretical guarantees for both our
algorithms. Theoretical and experimental results showed that
Laplacian smoothing can improve the utility bounds of our
algorithms. In the future, we will extend our algorithms to
non-convex objectives or other general equality constrained
problems for various machine learning applications. Further-
more, we will also introduce momentum techniques to further
accelerate the proposed algorithms and use parallel mecha-
nisms as in [45] for large-scale machine learning problems.
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