IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 3, FEBRUARY 1, 2022

2293

Loopless Variance Reduced Stochastic ADMM for
Equality Constrained Problems in IoT Applications

Yuanyuan Liu, Member, IEEE, Jiacheng Geng"', Fanhua Shang™, Senior Member, IEEE, Weixin An,
Hongying Liu™, Member, IEEE, and Qi Zhu

Abstract—The alternating direction method of multipliers
(ADMMs) is an efficient optimization method for solving equal-
ity constrained problems in Internet of Things (IoT) applications.
Recently, several stochastic variance reduced ADMM algorithms
(e.g., SVRG-ADMM) have made exciting progress, such as lin-
ear convergence for strongly convex (SC) problems. However,
SVRG-ADMM and its variants have an outer loop where the full
gradient at the snapshot is computed, and their outer loop con-
tains an inner loop, in which a large number of variance reduced
gradients are estimated from random samples. This loopy design
makes these methods more complex to analyze and determine
the inner loop length, which must be proportional to the con-
dition number to achieve best convergence, and is often set to
O(n) as a suboptimal choice, where n is the number of samples.
To tackle these issues, we propose an efficient loopless variance
reduced stochastic ADMM algorithm, called LVR-SADMM. In
our LVR-SADMM, we remove the outer loop and replace it with
a biased coin-flip, in which we update the snapshot with a small
probability to trigger the full gradient computation. Moreover,
we also theoretically analyze the convergence property of LVR-
SADMM, which shows that it enjoys a fast linear convergence
rate for SC problems. In particular, we also present an acceler-
ated loopless SVRG-ADMM (LAVR-SADMM) method for both
SC and non-SC problems. Various experimental results on many
real-world data sets verify that the proposed methods can achieve
an average speedup of 2x in the SC case and 5x in the non-SC
case over their loopy counterparts, respectively.

Index Terms—Alternating direction method of multipliers
(ADMMs), loopless algorithm, momentum acceleration, stochas-
tic variance reduced gradient (SVRG).
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I. INTRODUCTION

TOCHASTIC optimization has received significant
S interest in both academic and industrial communities in
recent years [1], [2]. With the growth of the Internet of
Things (IoT), it is increasingly important to be able to solve
problems with a very large number of training examples or
features. In this article, we mainly consider a class of com-
posite convex minimization problems that are to minimize a
finite-sum loss function [i.e., (1/n) Y i, fi(x)] and a regu-
larizer h(y) subject to an equality constraint, Ax + By = c.
This class of problems covers a wide range of IoT applica-
tions in large-scale machine learning, data science, statistics,
and operations research. For instance, one can obtain the
regularized empirical risk minimization (ERM) problem as:
min,(1/n) Y"1, fi(x) + h(x) by setting A = I, B = —I,
and ¢ = 0. By setting of the constraint Ax = y, one can
obtain the ERM problem with a structured sparsity regular-
izer: min,,(1/n) "1, fi(x) + h(y), s.t. Ax = y. Let h(-) be
the ¢1-norm regularizer [i.e., h(y) = t1|y||1 with a regular-
ized parameter t1], and if f;(-) is the logistic loss [i.e., fj(x) =
log(1 + exp(—biaiTx)), where (a;, b;) is the feature-label pair]
with the £>-norm regularizer [i.e., (T2 /2)|Ix]|?1, it becomes a
graph-guided logistic regression (GGLR) problem [3], where
71, 72 > 0 are two regularization parameters. If f;(-) is the
hinge loss [i.e., max(0, 1 — biaiTx)] with the £;-norm regular-
izer, one can obtain a graph-guided SVM problem [4]. Many
other applications include sparse learning [5]-[7], matrix
completion [8]-[11], and deep neural networks [12], [13].

To solve the above equality constrained composite
optimization problems, the alternating direction method of
multipliers (ADMMs) is an efficient optimization tool [14]. It
was derived from the augmented Lagrangian method, whose
core idea is to transform equality constrained problems into
unconstrained ones. However, ADMM and its variants are
deterministic methods and suffer a high computational cost per
iteration for large-scale problems. Stochastic gradient descent
(SGD) [15] uses only one or a small batch of random exam-
ple(s) in each iteration to form an estimator of the full
gradient, and thus, enjoys a significantly lower per-iteration
cost than deterministic methods. In recent years, some effi-
cient stochastic ADMM algorithms [4], [16], [17] have also
been proposed. Analogous to SGD, they have a very low
per-iteration computational complexity and are applicable for
large-scale problems. However, the variance of the stochas-
tic gradient estimator in both SGD and stochastic ADMMs
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may be large [12], which leads to poor performance and slow
convergence.

In recent years, many variance reduction techniques, such
as stochastic average gradient (SAG) [18], stochastic dual
coordinate ascent (SDCA) [19], stochastic variance reduced
gradient (SVRG) [12], and variance reduced SGD (VR-
SGD) [20], have been introduced into stochastic ADMMs,
and result in some variance reduced stochastic ADMM algo-
rithms, such as SAG-ADMM [21], SDCA-ADMM [22], and
SVRG-ADMM [23]. Among these methods, SVRG-ADMM is
much more attractive than SAG-ADMM and SDCA-ADMM
due to its significantly lower storage requirement compared
with SAG-ADMM and SDCA-ADMM, which require storage
of all the gradients of component functions or dual variables.
Inspired by this, this article will propose an efficient loopless
SVRG-ADMM algorithm for solving both strongly convex
(SC) and nonstrongly convex (non-SC) problems.

More recently, a new momentum acceleration technique
has been proposed in our previous work [2], [24], and
has been incorporated into SVRG-ADMM to result in
an accelerated SVRG-ADMM (ASVRG-ADMM). ASVRG-
ADMM [24] inherits the linear convergence of SVRG-ADMM
for SC problems and improves the convergence rate from
O(1/K) to (’)(I/Kz) for non-SC problems, where K is the
number of epochs or outer-loop iterations. Such an improved
convergence result consequently fills the gap in the conver-
gence rates between stochastic ADMMs and deterministic
ADMMs. In this article, we will also propose an efficient loop-
less ASVRG-ADMM method for solving various real-world
applications.

A. Motivations

A common structural feature of existing stochastic variance
reduction methods (e.g., SVRG [12] and SVRG-ADMM [23])
and their accelerated versions such as ASVRG-ADMM [24]
is the inclusion of an outer loop, where the exact full gradi-
ent at a snapshot point (also called a reference point) is first
computed using a full pass through the training data, and each
outer loop contains an inner loop, in which a variance reduced
gradient estimator is constructed using the full gradient and
new stochastic gradient information. That is, they are all two-
stage optimization methods. However, this loopy design incurs
the following issues. First, the loopy design makes the conver-
gence analysis of the methods much more complex. As shown
in the theoretical analysis and proofs in [23] and [24], we
need to perform elaborate aggregations across the inner loop
by summing up specific inequalities to construct the conver-
gence criterions at two adjacent epochs to prove convergence.
Second, we require to decide the termination of the inner loop.
For the two-stage optimization methods, such as SVRG [12],
SVRG-ADMM [23], and ASVRG-ADMM [24], to get best
convergence, the optimal inner loop length m must be propor-
tional to the condition number of the loss function [25], [26].
For SC problems, the condition number is defined as: L/pu,
where L is the Lipschitz constant of the objective function
and u is its strong convexity parameter. However, p is often
unknown or hard to estimate. Even when we can estimate it
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in such regularized problems with an explicit SC regularizer,
the estimate is often quite loose. Due to this fact, m is often
set to O(n) as a suboptimal choice. As suggested in [12],
m = 2n for SVRG, and m = |[2n/b] for SVRG-ADMM and
ASVRG-ADMM, where b is the minibatch size.

Kovalev et al. [25] has proposed the loopless variants
of SVRG [12] and Katyusha [27] (called L-SVRG and
L-Katyusha, respectively), which remove the outer loop and
replace it by a biased coin flip. The snapshot point is updated
to the latest iterate with a small probability p and remains
unchanged otherwise. This loopless structure makes the vari-
ants more intelligible and easier to analyze. In addition, the
optimal probability p for L-SVRG can be made independent
of the condition number according to its theoretical analy-
sis. Moreover, [26] has further put forward the L-SVRG and
L-Katyusha methods with arbitrary sampling and also extends
L-SVRG to non-SC and nonconvex settings. All the exciting
results motivate us to incorporate this loopless technique into
existing well-known two-stage stochastic ADMM algorithms,
such as SVRG-ADMM and ASVRG-ADMM, to address the
issues mentioned above.

B. Our Main Contributions

This article proposes two new efficient loopless stochas-
tic variance reduced ADMM algorithms to push toward faster
convergence speed for equality constrained problems.

We summarize our main contributions as follows.

1) Loopless Algorithms and Their Extensions: To address
the issues of SVRG-ADMM mentioned above, we
propose a novel loopless variant of SVRG-ADMM,
called loopless variance reduction stochastic ADMM
(LVR-SADMM), for solving equality constrained
minimization problems. We also extend our LVR-
SADMM algorithm from the SC setting to the non-SC
one, and also present its momentum accelerated vari-
ant (namely, LAVR-SADMM) for the two classes of
problems.

2) Slightly Smaller Variance Upper Bound: As shown in
our theoretical results in Section III-B, the upper bound
on the expected variance of the stochastic gradient esti-
mator for our LVR-SADMM is slightly smaller than that
of the original SVRG-ADMM [23].

3) Simpler Theoretical Analysis and New Convergence
Criterion: Compared with SVRG-ADMM, our theoret-
ical analysis is notably simpler and more intuitive, as
we simply use a single iteration analysis to establish
convergence. In spite of its simplicity, our convergence
criterion is novel, and our proofs are also new, rather
than a trivial simplification of the loopy analysis in [23].

4) Linear Convergence: Theorem 1 in Section III-B indi-
cates that our LVR-SADMM enjoys a fast linear con-
vergence rate for SC problems, which is the same as
its loopy counterpart, SVRG-ADMM. However, LVR-
SADMM converges much faster in practice.

5) Superior Practical Behavior: We conduct extensive
experiments on publicly available data sets to demon-
strate that our loopless methods (LVR-SADMM and
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TABLE 1
NOTATIONS
Notation Definition
(z*, y*, \*) An optimal solution of the target problem
R (y) The (sub)gradient of function h at y
Vf(x) The full gradient of f at  when f is differentiable

o The strong convexity parameter
L The smoothness parameter

B The penalty parameter

n The step-size or learning rate

o A constant in the matrix G

p The probability to update the snapshot point
b The size of mini-batch

[lall The Euclidean norm of a vector a

The spectral norm of a matrix A,

i.e., the largest singular value of A

)t The pseudo-inverse

Omin(A) The smallest eigenvalue of A
Q1 Q-1 is a positive semi-definite matrix,
- where @) is a matrix and [ is an identity matrix
lell? 2T Qa
ok The Lyapunov function
6 The momentum weight

LAVR-SADMM) enjoy superior practical behavior than
their loopy counterparts for both SC and non-SC
problems. For the loopy methods, SVRG and SVRG-
ADMM, to achieve best convergence, the optimal inner
loop size depends on the condition number, which
is usually unknown or hard to estimate correctly.
Therefore, one often sets the inner loop size to be
O(n) as a suboptimal choice. However, for our loop-
less methods, LVR-SADMM and LAVR-SADMM, with
a flexible probability p, it is much easier to achieve bet-
ter practical behavior than loopy methods as long as we
choose p from the optimal interval to be independent of
the condition number. This is the main cause that our
loopless methods converge much faster than their loopy
counterparts.

C. Roadmap

The remainder of this article is organized as follows.
In Section II, we discuss some related work of stochastic
ADMMs. Section III presents our LVR-SADMM algorithm
and provides its convergence analysis. In Section IV, we
develop an accelerated LVR-SADMM algorithm for both
SC and non-SC cases. In Section V, we exhibit practical
performance of LVR-SADMM and LAVR-SADMM for many
SC and non-SC problems. In Section VI, we conclude this
article and discuss future work.

II. PRELIMINARIES

In this section, we review recent progresses and efforts in
stochastic ADMM algorithms.

A. Notations and Common Assumptions

We summarize the notations used in this article in Table I.

For a convex function f : RY > R, f is u-SC if there exists
1 = 0 such that f(y) > f(x) + (Vf(x), y — x) + (/2) ||y — x||*
for all x, y € R?. f is L-smooth if there exists L > 0 such that
IVf(x) = VIl < Lljx — y|| for all x,y € RY.
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Before presenting our algorithms and convergence analysis,
we give two common assumptions for the target problem.

Assumption 1: Each component function f; is convex, con-
tinuously differentiable, and L;-smooth.

Assumption 2: h is convex but not necessarily smooth.

B. Related Work

In this article, we mainly focus
minimization problem:

{f(x) + h(y), s.t. Ax+By=c} (D)

on the following

min
xeR41 ,yeRdZ
where A € R%3*4 and B € R%*% are given matrices, ¢ € R%
is a constant vector, and f(x) = (1/n) Z?:l fi(x). Here, n
is the number of training samples, f;(-) is the loss function
on sample i, and A(-) is a regularizer. In fact, problem (1)
is the general form of the ADMM. When B = —[ and ¢ =
0, the general constraint becomes Ax = y as in GGLR and
graph-guided SVM problems.
To solve problem (1), the main update rules of the
ADMM [14] are formulated as follows:

2
yk = arg min {h(y) + gHAxk*1 +By—c+ Akl H } 2)
y

2
# = arg min {f(x) " g”Ax + By — ¢4k H } 3)
X
A=Ak Byt — ¢ @)

where A is the scaled dual variable as in [14], and 8 > 0 is a
penalty parameter.

When the number of training samples (i.e., n) is very large,
the per-iteration cost of standard ADMM is very high due to
the computation of Vf(x). Therefore, some efficient stochastic
ADMM algorithms, such as [4] and [16], have been proposed
in recent years. Their update rules for y* and AF remain
unchanged, while they approximate x* as follows:

= agmin {5 (44 5 e

2
G

+ gHAx—i—Byk P Hz} 5)

where iy is drawn uniformly at random from {1,2,...,n},
me o 1/+/k is a step-size or learning rate. Indeed, although
the stochastic gradient Vfik(xk_l) is an unbiased estimator
of Vf(xk=1), the algorithms require the step size to asymp-
totically decrease to guarantee convergence, as pointed out
by [12], [28], due to the variance of random sampling.

Recently, several variance reduced stochastic ADMM algo-
rithms have been proposed, such as SAG-ADMM [21], SDCA-
ADMM [22], and SVRG-ADMM [23]. SVRG-ADMM is
superior to the other two methods since it does not require stor-
ing any intermediate gradients or dual variables. In particular,
the SVRG estimator is formulated as follows:

() = %Z,<Vf (4 ) - vA®) + @ ©

where i is a random minibatch set of size b uniformly drawn
from {1,2,...,n}, and X is a snapshot point. Notably, this
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SVRG estimator is unbiased [i.e., ]E[%f[k (xk’])] = Vf(xk’l)].
As a result, we can use a constant step size n to achieve faster
convergence due to variance reduced stochastic gradients.

More recently, [24] proposed an efficient momentum
ASVRG-ADMM method, which attains linear convergence in
the SC case and achieves a convergence rate of O(1 /K?) in
the non-SC case. Moreover, the loopless variants of SVRG
and Katyusha (L-SVRG and L-Katyusha) have been developed
in [25] and simplify the convergence analysis for both SVRG
and Katyusha. Besides, L-SVRG is said to be the first result
that a variant of SVRG achieves linear convergence with no
requirement to know the condition number, which is often
unknown or hard to estimate correctly in practice. The loop-
less methods remove the outer loop of the original methods
and instead use a probabilistic update for the snapshot point
to trigger the computation of the full gradient.

C. Comparison With Related Work

In this article, we introduce the loopless technique into
the recently proposed SVRG-ADMM [23] and ASVRG-
ADMM [24], and propose two new loopless LVR-SADMM
and LAVR-SADMM methods for solving problem (1). Note
that our theoretical analysis is different from those of both L-
SVRG and SVRG-ADMM. Because of the equality constraint
and the coupling terms in problem (1), our theoretical analysis
becomes much more complex than that of L-SVRG [25]. On
the other hand, our analysis is significantly simpler than that of
SVRG-ADMM, since we only use a single iteration analysis
to establish convergence. Moreover, we adopt a closed-form
expression for x¥ by substituting the specific form of the matrix
G (this specific form is also adopted in [23], [24], and [29])
into the subproblem of x, on which our algorithm and conver-
gence analysis are based. Besides the loopless design of our
methods, this processing is another main factor that differs our
analysis from that of SVRG-ADMM, since the latter uses a
general G satisfying G > I throughout the proofs. Despite the
simplicity of our proofs, our convergence criterion is novel
and quite different from that of SVRG-ADMM.

ITI. LOOPLESS VARIANCE REDUCTION STOCHASTIC
ADMM

In this section, we propose a new LVR-SADMM algorithm
for solving the SC and non-SC problem (1). Moreover, we
also provide its convergence analysis.

A. Our LVR-SADMM Algorithm

Using the SVRG estimator in (6) and a constant step size
n, the subproblem with respect to x is formulated as follows:

~ 1 2
** = arg min {xTVflk (xk_l) + —Hx — X! H
X

2n G

2
+ §”Ax+3y’<—c+)\"—1” } %

When setting G = I as in [4], the closed-form solution of (7)
is formulated as follows:
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1 —1
Xk = (—1 + ,BATA>
n

x (%xk_l — Vi (xk_l) - ,BAT(Byk e+ )J‘—l)).
(8)

The update rule of x* in (8) involves computing the inverse of
the matrix ((1/n)I + /3ATA), which is time consuming when
AT A is large. To avoid computing the inverse of the matrix, one
can set G = yI— BnATA as in the inexact Uzawa method [23],
[29], where y > Bn||ATA|l, + 1 is a constant. Then, a new
update rule for (7) is formulated as follows:

U S g[gf[k (xkq)
+ ,BAT<A)/‘_1 B — c+,\"—1)]. )

The details of our LVR-SADMM algorithm for solving the
SC problem (1) are formally presented in Algorithm 1. Below,
we make several remarks about our LVR-SADMM.

1) Our LVR-SADMM method is inspired by L-SVRG and
L-Katyusha [25], [26], and our key idea is to remove the
outer loop in SVRG-ADMM and instead use a small
triggering probability to update the snapshot and cal-
culate the full gradient. In essence, LVR-SADMM is
a new LVR-SADMM algorithm, which uses both the
loopless and variance reduction techniques. Despite this
simple and intuitive thought, our analysis is signifi-
cantly simpler and superior experimental results can be
obtained, compared with its loopy counterpart, as shown
in Section V.

2) In each iteration of LVR-SADMM, the snapshot X is
updated to the previous iterate x*~! with probability p.!
Meanwhile, with the same probability, the dual variable
A¥ is updated to —(1/8)(AT) VF(x*~1) as in SVRG-
ADMM [23]. Otherwise, % remains unchanged (i.e.,
=51, and AF = M1 4 Ak 4 ByF — .

3) Note that the parameter y in step 5 of Algorithm 1 is
often set to a constant so that y > ymin = BnlATA|2+1,
and thus, it can guarantee that G > [ as in [23] and [29].
In our theoretical analysis below, we can simply set y >
[(2B8nlAAT |12)/p] for our convergence criterion.

B. Convergence Analysis

In this section, we analyze the convergence property of our
LVR-SADMM algorithm for SC problems. We first give our
new convergence criterion, which plays an important role in
our theoretical analysis. Then, our intermediate results and
main theoretical results are presented.

Below, we give two additional assumptions for our conver-
gence analysis.

INote that we use x*~! instead of x* to provide simpler analysis, and
this small modification barely affects the empirical behavior but is necessary
for our convergence analysis. Durin% practical implementation, it would be
a better choice that instead of x*~! is used to update ¥ and AK li.e.,
A= —178@AT T VFKK) instead of AF = —(1/8) @D T vFk—1)].
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Algorithm 1 LVR-SADMM for the SC Problem (1)

Input: Penalty parameter 8, learning rate 1, a constant y > 0, mini-batch size 1 < b < n, and probability p € (0, 1].

Initialize: x° =3°, y°, and A°.
1: fork=1,2,... do
2. Choose I; € {1,2,...,
3: %f[k(xkfl) =

4 Y= arg miny, 1 A(y) + gllek_l + By — ¢ + Akl ||2};

n} of size b uniformly at random;

ﬁzikelk[vfik(xkil) - Vfik(}kfl)] + VFGE;

5: xk = xk_l - g %ﬁk(xk—l) +,3AT(A)Ck_1 +Byk — C+Ak_1):|;

o @b = @ =5 @D,
: ’ (}k—l, )Lk—l —i—Axk_] —I—Byk —C),
7: end for

with probability p,
with probability 1 — p;

Assumption 3: The function f is u-SC, if there exists a
constant i > 0 such that

JO) = f) +(Vf(x),y —x) +

for all x,y € RY.

Assumption 4: The matrix A has full row rank.

Assumption 4 was also used in some related work, such
as [23], [24], and [30]-[32]. Note that all the assumptions are
the same as in SVRG-ADMM for the SC case, which indicates
that there is no extra assumption for our analysis.

1) Convergence Criterion: We first introduce a new con-
vergence criterion, and the Lyapunov function for our conver-
gence analysis is defined as follows:

K= w4 D+ v

%ny—xn2 (10)

(1)

"4 () ) - ()]
oo 4T s(b)zuvﬁ< ) Vi)

where

wk = ka —x*

py*n
vE — Bn(y —2Bn[AAT],) ka —A*
y2(1 —p)
28n|AAT _
> M’ and 8(b):u
p b(n—1)

Note that this convergence criterion is quite different from that
used in SVRG-ADMM [23], whose criterion is

R, y) =f@) —f(*) = V&) (x = x%)
+h() =) =KD =y
The difference is due to our loopless design and the lineariza-
tion procedure as in (9). It is clear that @k, Wk, DK and V¥
are all nonnegative.

2) One-Iteration Analysis: Our theoretical results mainly
contain two key lemmas (i.e., Lemmas 1 and 2 below) and one
theorem (i.e., Theorem 1 below). All the results indicate that
our LVR-SADMM converges linearly as its loopy counterpart.
All the detailed proofs of the lemmas and theorem are provided
in the Supplementary Material.

Lemma 1 (Variance Upper Bound):

s % (+) - ()]

(12)

< 4L8(b)[f<xk_l) —f(x) - (Vf(x*)vxk_l —x*ﬂ
28(b) ZHVfl(Nk 1) B Vﬁ(x*) 2

where §(b) =
b <n.

Remark 1: Since (1/m) Y1 |IVAGE™Y — VA@H|? <
LIFGETY — f(x*) — (VF(x®), 1 — x*)], it is clear that
Lemma 1 presents a slightly smaller upper bound on the
expected variance of the gradient estimator %f]k (x*=1) than
that of SVRG-ADMM [23] (see [23, Proposition 1]).

Lemma 2:
el 2 a1 )]
= (1 - M) [ 2, 2y —ALn’G®) + 1
B 14 y2
x [F(e) = £ (471) + 9 () (4 =)

p 2n*[AA" ], H ngZ

(13)

mn—>b/b(n—1)) <1, L :=max;L;, and 1 <

+ D4

: - (14)

where ¢k == B(WF1T — a* 4 A1 4+ Byf — ¢), and DX =
[(4n?8(B))/py*nl LIy IVAGE) = VAGH|.

Our main result is the following theorem, which gives the
convergence rate of Algorithm 1.

Theorem 1: Suppose that Assumptions 1-4 hold. If the
probability p, learning rate n, and parameter y satisfy

(38(b)+1)‘7min(AAT)
(35(b)+1)0min(AAT)+”AATH2
—_ ) T
0<n< mm{l Z (ﬂ(l p)gmln(AA ) pL)y

L™ " 2BL((1=p)omin(AAT) (38 (b)+1)—p||AAT | )

and y > [(2BnllAAT|2)/p],
holds for all k > 1:

then the following inequality

]E[Wk+Dk+Vk]

BN\ k- ( p) 1 l—p
<|(1-=|w 1-=)D S,
—( ) U T T gy,

Y

k—1
1
(15)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 14,2025 at 02:47:11 UTC from IEEE Xplore. Restrictions apply.



2298

Let p = max{l — (un/y),1 — @/2).(1-p/
1 —[(287n]|IAAT|]2)/y ]}, and it is clear that p < 1.
Then, E[®F] < p* @0,

Theorem 1 indicates that LVR-SADMM enjoys a fast lin-
ear convergence rate in expectation, which is identical to that
of SVRG-ADMM. Although they have the same convergence
rate, LVR-SADMM converges much faster in practice.

Discussion 1: According to Theorem 1, we know that the
contraction of the Lyapunov function is max{l — (un/y), 1 —
(p/2), 1 = p/1 = [2BnllAAT|[2)/y])}. Since n < 1/L, the
first term is greater than 1 — (u/yL), and thus, the oracle
complexity is not better than O(L/u log(1/¢)). LVR-SADMM
calls the stochastic gradient oracle in expectation O(b + pn)
times in one iteration. Using these two results, one can
obtain the total oracle gradient complexity O(([b/p] + n +
[bL/u] + [Lpn/u])log(1/¢)). Therefore, if we choose p €
[min{j(b/n), j(u/L)}, max{j(b/n), j(u/D)}], where j = O(1),
the oracle gradient complexity of our LVR-SADMM becomes
O((n+ (L/w))log(1/¢)). In other words, our LVR-SADMM
has the same oracle gradient complexity as SVRG-ADMM.
However, LVR-SADMM converges significantly faster than
SVRG-ADMM in practice, as shown in our experimental
results.

Moreover, we list some remarks about our convergence
results.

1) Although we simply apply the loopless idea to SVRG-
ADMM, our convergence analysis is quite different
from those of L-SVRG and SVRG-ADMM. Owing to
the existence of the equality constraint and the cou-
pling term in problem (1), our analysis becomes much
more complicated than L-SVRG. On the other hand, our
theoretical analysis is significantly simpler than SVRG-
ADMM, which is consistent with the advantage of the
loopless approach that a single iteration analysis is
sufficient to establish convergence as in [25].

2) To avoid finding the inverse of the matrix, we substitute
G = yI — BnAT A into the subproblem in (7) and obtain
a closed-form solution of xf in (9), whereas SVRG-
ADMM [23] uses a general matrix G as long as G > [
throughout the whole proofs. In fact, we only require to
find a constant y satisfying y > [(28n]AAT|2)/p] for
our LVR-SADMM algorithm.

C. Extension to Nonstrongly Convex Settings

In this section, we extend our LVR-SADMM algorithm to
the non-SC setting. The details of LVR-SADMM for solv-
ing non-SC problems are described in Algorithm 2. The main
difference between Algorithms 1 and 2 is the update rule of
the dual variable AX. That is, Ak = A1 4+ Axk + Byf — ¢
for Algorithm 2, while A* = —(1/8)AT)'VF(*~1) with
probability p for Algorithm 1. The mechanism behind this dif-
ference is that Algorithm 1 proposed in this article is inspired
by [23, Algorithm 1], where the dual variable uses a special
update rule in the outer loop, i.e., W= —(1/B) AT VFE),
and s is the outer loop index. In our convergence analysis of
Algorithm 1, we find that this update rule is also necessary
to obtain the desired convergence result. Therefore, we adopt
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Algorithm 2 LVR-SADMM for the Non-SC Problem (1)
Input: Penalty parameter 8, learning rate n, a constant y > 0,
mini-batch size 1 < b < n, and probability p € (0, 1].
Initialize: x° = 30,0, A°.
1. fork=1,2,... do

2:  Choose Iy < {1,2,...,n} of size b, uniformly at
r~and0m;
30 VR = el Ve = VEE D] +

VG,
4 = argmin, {h(y) + 81lAdk 14 By — ¢ 42k ||2];

5 ok = LG R+ BATAN B — ek

6 ARk =21 4 Axk 4 ByF — ¢
. ~ =1 with probability p,
X =

%=1, with probability 1 — p;
8: end for

this update rule with probability p for the technical reason to
show linear convergence.

IV. ACCELERATED LOOPLESS VARIANCE REDUCTION
STOCHASTIC ADMM

In this section, we also develop a new accelerated vari-
ant of LVR-SADMM (called LAVR-SADMM ) for solving
both SC and non-SC problems. Moreover, we also discuss
our algorithms’ applications in IoT in Section IV-C.

A. Our LAVR-SADMM in Strongly Convex Setting

In this section, we further introduce the loopless idea
into ASVRG-ADMM proposed in our previous work [24],
and propose a new accelerated LVR-SADMM algorithm for
solving SC problems, as shown in Algorithm 3. Inspired
by [24, Algorithm 1], we introduce an auxiliary variable z
to construct the momentum acceleration form, i.e., x*
(1 — 0)¥*~! 4+ 0z*. Similar to the subproblem in (7), after
introducing the momentum weight 6 (0 < 6 < 1) into the
proximal term (1/2n)]x — Xkl ||2G, a new update rule of 2 is
formulated as follows:

k-1

2
-]

~ 0
&= arg min {ZTVﬁk (xk_l) + —
Z

2n G

2
+ gHAz B — ¢4k H } (16)
Here, we still adopt the inexact Uzawa method as in [24], i.e.,
G = yla, — (Bn/0)ATA with y > ymin = [(Bnl|ATAll2)/6]1+1

to guarantee that G > I. Consequently, one can arrive at a
closed-form expression of z* as follows:

k_ k=1 _ T [~ (k—l
7 =z _;/9 Vi x )
+ ﬂAT<Azk_1 F B — c+kk_1)]. (17)

In the SC case, € can be set to a constant as in [24], and
we also take a probabilistic update for A¥ as in Algorithm 1.
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Algorithm 3 LAVR-SADMM for the SC Problem (1)

Input: Penalty parameter 8, learning rate 1, a constant y > 0, mini-batch size 1 < b < n, and probability p € (0, 1].

Initialize: x° =0 =3°,,°, 0, and A°.
1: fork=1,2,... do

2:  Choose Iy € {1,2,...,n} of size b, uniformly at random;

o V6 = \le\zz'kelk[vﬁk(xk*l) = Vi, GO+ v Eh;

4 Y= arg miny {h(y) + gllAzk_l + By — ¢ + Akl ||2};

5. =21 y—”e[%f,k ) + AT (A + Byk —c + ,\k—l)];

6 = (1-0)F 1 +0

bk = @l =@V,

P A = k=1 3 k—1 k=1 k_
G AN+ AT 4+ By — o),
8: end for

with probability p,
with probability 1 — p;

Algorithm 4 LAVR-SADMM for the Non-SC Problem (1)

Input: Penalty parameter 8, learning rate 1, a constant y > 0, mini-batch size 1 < b < n, and probability p € (0, 1].

Initialize: x° = ;0 =739, yo, 20, and 6p=1-— L]'fg?
1. fork=1,2,... do
2. Choose I € {1,2,...,n} of size b, uniformly at random,;

0 Vi = ﬁZikelk[Vfik(xk_l) = V6, GO+ v Eh;

& vk = argminy [hO) + §1AZT 4 By — e +12);

k— =1_ _n
YOk—1

o= (=) +

7. A= Akl Ak 4+ Byk —c;

W
I\l

loF . + 402  — 02
k—1 k—1 k—1 k—1
8: ()ch, Qk) = (x ’ 2 )’
GEL, 0ky),
9: end for

[%ﬁk(xk—l) 4 BATAR 4 B — ¢ 4+ )Lk—l):l;

with probability p,
with probability 1 — p;

B. LAVR-SADMM in Nonstrongly Convex Setting

In this section, we generalize our LAVR-SADMM to the
non-SC case, as shown in Algorithm 4. The momentum weight
Ok is updated as: 6 = [(,/6;_; + 467, —67_,)/2] with prob-
ability p, and remains unchanged otherwise. 6y is initialized to
1—(Lné(b)/1 — Ln). Note that this update rule of the momen-
tum weight is inspired by [24]. The second main difference
between Algorithms 3 and 4 is that in Algorithm 4, we do not
use a probabilistic update for A¥ as in Algorithm 2. The reason
for this difference is the same as that we have explained in
Section III-C.

C. Our Algorithms’ Applications in loT

IoT devices with emerging products are widely used, e.g.,
mobile sensors, IoT-enabled drones, and vehicles. Besides,
there are lots of IoT-enabled massively data-intensive appli-
cations, such as somatosensory games, hyperscale machine-
type communications, holographic rendering, and multiway
teleconferencing. We would say that our algorithms, includ-
ing LVR-SADMM and LAVR-SADMM, can be used in
many ADMM-based IoT applications. For instance, [33] used
stochastic ADMM to tackle the issues with communica-
tion bottleneck and straggler node in distributed learning
systems. More specifically, they formulated the decentralized
optimization problem as: miny Z;’:lfi(xi; D), st.1®y—

x = 0, where D; is the private data set at agent i, 1 =
(1,..., DT € R", and ® is the Kronecker product. The aug-
mented Lagrangian function of this problem is Lg(x,y, A) =
YL fikii D)+ (A 1®y—x) + (B/2)]1 ®y — x||%, where
A is the dual variable and § > 0 is a penalty parameter.
Moreover, our algorithms can be applied to other ADMM-
based IoT applications, such as [34] and [35]. Wu et al. [34]
designed an ADMM algorithm and its decentralized format to
implement the optimal transmission frequency management
system for IoT edge intelligence. Yan et al. [35] proposed
an ADMM-based algorithm to solve the robust beamforming
design problem for downlink cloud radio access networks.

V. EXPERIMENTAL RESULTS

In this section, we conduct extensive numerical experi-
ments to demonstrate the efficiency of our LVR-SADMM
and LAVR-SADMM methods for solving SC GGLR, graph-
guided SVM, and non-SC graph-guided fused Lasso (GGFL)
problems on some publicly available data sets (e.g., bio-train,
covtype, HIGGS, and epsilon), as shown in Table II. All the
experiments were performed in MATLAB on a PC with Intel
i7-7700 3.6 GHz CPU and 32-GB RAM. As in [23] and [24],
it has been verified that SVRG-ADMM and its accelerated
variant ASVRG-ADMM outperform several state-of-the-art
algorithms, such as STOC-ADMM [4], OPG-ADMM [17],
RDA-ADMM [17], SAG-ADMM [21], SDCA-ADMM [22],
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TABLE 11
SUMMARY OF THE DATA SETS USED IN OUR EXPERIMENTS AND THE
MINIBATCH SIZE b FOR ALL THE ALGORITHMS

Data sets  # training # test dimensionality b
bio-train 72,876 72,875 74 20
covtype 290,506 290,506 54 20
HIGGS 7,700,000 3,300,000 28 150
epsilon 200,000 200,000 2,000 150
10 100

) b=120 3 4 b=300

§ +--- b=100 § E +--- b=250

S —%— b=80 £ ——— b=200

g1 b=60 || 2 b=150

E + - b=40 é +--- b=100

g LV —6—b=20 g —O—b=50

E 10710 é 10

%10"5 N AR DEO-D-9- § S PP

0 1 2 3 4 5 0 20 40 60 80 100
CPU time (s) CPU time (s)
Fig. 1. Objective value minus minimum value versus CPU time (seconds) of

LVR-SADMM with different minibatch sizes for GGLR problems on covtype
(left) and HIGGS (right).

and SCAS-ADMM [36]. Thus, we compare our methods only
with their counterparts, SVRG-ADMM and ASVRG-ADMM.

A. Robustness Analysis of Minibatch Size

We first test the robustness of the proposed methods on the
size of minibatch b, and try different minibatch sizes in our
LVR-SADMM for solving GGLR problems. Fig. 1 plots the
objective value minus minimum value versus CPU time of our
LVR-SADMM with different sizes of minibatch for solving
the GGLR problem on covtype and HIGGS. As we can see,
the practical performance of our loopless stochastic ADMM
methods is quite robust with different minibatch sizes.

B. Graph-Guided Logistic Regression

In this section, we evaluate the performance of our LVR-
SADMM and LAVR-SADMM methods for solving the fol-
lowing SC GGLR model:

1 n
min {; ;(log(l + exp(—bjal x)) + %nxuz) + 1 ||y||1}
sit, Ax=y

where a; € R4, b;i € {—1,1}, and 11,17 > 0 are two reg-
ularization parameters. As in [24], we set 7] = 1075 and
) = 1072 in our experiments. Similarly, we set A = [M; ]
as in [4], [21], [23], [24], and [37], where M is the sparsity
pattern of the graph obtained by sparse inverse covariance
selection [38]. For our LVR-SADMM and LAVR-SADMM,
their parameters are set as follows: p is the same order of
magnitude as b/n [ie., p = j(b/n), j=O1)] and y =1 as
in [23] and [24]. For SVRG-ADMM and ASVRG-ADMM, we
also utilize the linearized update for x* and set the inner loop
length m = |j(n/b)], j = ®(1), y = 1 and choose the snap-
shot X and starting points in the outer loop to be the uniform
average of x* rather than the last iterate X as in [23] and [24].
We set the momentum weight 6 = 0.9 for ASVRG-ADMM
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and LAVR-SADMM. 7 and B are set according to the theoret-
ical analysis in the methods. In addition, we set the minibatch
size b = 20 for bio-train and covtype, b = 150 for HIGGS
and epsilon.

Fig. 2 shows the training objective value minus the min-
imum value and test loss versus CPU time for the SC
GGLR problem on the four data sets. We observe that
both LVR-SADMM and LAVR-SADMM achieve an average
speedup of 2x over SVRG-ADMM and ASVRG-ADMM,
which verifies the effectiveness of our loopless technique
and is consistent with our previous analysis about the
mechanism behind the superior empirical behavior of our
loopless methods versus their loopy counterparts. In partic-
ular, our accelerated algorithm, LAVR-SADMM, performs
slightly better than other methods, including ASVRG-ADMM
and LVR-SADMM. Besides, our nonaccelerated algorithm,
LVR-SADMM, converges even faster than ASVRG-ADMM.
Theoretically, all the four methods enjoy linear convergence
in the SC case, while SVRG-ADMM and LVR-SADMM can
be slightly improved by ASVRG-ADMM in terms of conver-
gence bounds. As we mentioned in Section I, the inner loop
size m for loopy algorithms is set to O(n/b) as a suboptimal
choice rather than be proportional to the condition number of
the problem (which is often unknown in reality), while loop-
less methods can achieve better practical performance with the
probability p chosen properly from the optimal interval to be
independent of the condition number. Consequently, LAVR-
SADMM and LVR-SADMM converge significantly faster than
ASVRG-ADMM and SVRG-ADMM in practice, respectively.
We can find that the loopless technique has a greater impact
on convergence speed than the momentum acceleration trick
in the SC case, and thus, our LVR-SADMM converges even
faster than ASVRG-ADMM.

C. Graph-Guided SVM

In this section, we also analyze the convergence behavior
of our loopless methods for solving the following SC graph-
guided SVM model:

X,y n
i=1

s.t., Ax =y.

) 1 ¢ 1)
min {— Z(maX(O, 1— bia,-Tx) + 5||x||2> + 11 ||y||1]

Here, max (0, 1 —biaiTx) is the nonsmooth hinge loss. As in [4]
and [24], we set 11 = T, = 1073, and A is obtained in the
same way as in the GGLR problem. Besides, we set b = 80,
6 = 0.85, and other parameters (i.e., m, y, p, n, and §) are set
in the same way as in GGLR. We use the publicly available
data set, 20newsgroups* (16 242 samples and 100 dimensions).
80% samples of the data set are used for training and 20%
for test. We also adopt the one-versus-rest strategy for this
multiclass classification task. Since the previous work [24]
has experimentally verified that SVRG-ADMM outperforms
STOC-ADMM and classical SVM, we only report the results
of our algorithms and their loopy counterparts. In addition,

2http://www.cs.nyu.edu/ roweis/data.html
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Fig. 2. Comparison of SVRG-ADMM [23], ASVRG-ADMM [24], LVR-SADMM, and LAVR-SADMM for solving GGLR problems on the four data sets.

Top: Objective value minus minimum value versus CPU time (seconds); Bottom: Test loss versus CPU time (seconds). (a) Bio-train. (b) Covtype. (c) HIGGS.

(d) Epsilon.
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Fig. 3. Accuracies of the four stochastic variance reduction ADMM methods
for multiclass classification tasks on 20newsgroups.

we report the average accuracies and corresponding standard
deviations on ten runs.

Fig. 3 shows the test accuracy versus the number of epochs
of the four methods on 20newsgroups, where the x-axis is
the number of epochs, and the y-axis denotes the average
prediction accuracies and standard deviations of all the meth-
ods on test data. The result indicates that LVR-SADMM
and LAVR-SADMM outperform SVRG-ADMM and ASVRG-
ADMM. We notice that ASVRG-ADMM is only slightly
better than SVRG-ADMM, which is reasonable in the SC
setting as explained in the last section.

D. Graph-Guided Fused Lasso

In this section, we further evaluate the performance of
our LVR-SADMM and LAVR-SADMM methods in the non-
SC case. The non-SC GGFL problem [39] is formulated as
follows:

DR
rf(l})p p glog(l + exp(—biaiTx)) + 7y, st., Ax=y

For the counterparts, SVRG-ADMM and ASVRG-ADMM,
the snapshot and starting points are chosen according to their
algorithms in the non-SC case.

Fig. 4 demonstrates the experimental results (including
objective gap and test loss) of all the methods on the four
data sets. All the results show that the accelerated algorithms,
i.e., ASVRG-ADMM and LAVR-SADMM, usually outper-
form the nonaccelerated methods, SVRG-ADMM and LVR-
SADMM, which are consistent with their convergence results,
i.e., ASVRG-ADMM for O(1 /Kz) versus SVRG-ADMM for
O(/K). In particular, LAVR-SADMM can achieve an aver-
age speedup of 5x over other algorithms, which verifies the
effectiveness of LAVR-SADMM.

VI. CONCLUSION AND FURTHER WORK

In this article, we first proposed an efficient loopless
LVR-SADMM method for both SC and non-SC equality con-
strained optimization problems in various IoT applications.
We also theoretically analyzed the convergence property of
LVR-SADMM, which shows that it attains the best-known
linear convergence as its loopy counterpart for SC problems.
Our LVR-SADMM nontrivially extends to the non-SC setting.
Moreover, we also proposed an accelerated LAVR-SADMM
method. We also discussed our algorithms’ applications in
IoT. Various experimental results verified that the proposed
methods converge much faster than their loopy counterparts.

Moreover, there is still some work that needs to be done
for the proposed algorithms, such as a further improve-
ment in theoretical results for non-SC problems, convergence
analysis for our accelerated algorithm, and self-adaptive prob-
ability options in practice. An interesting direction of future
work is the convergence research of the proposed accelerated
algorithm, as well as the loopless variants of accelerated algo-
rithms [40]-[42]. Furthermore, it is also interesting to extend
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Fig. 4. Comparison of all the four methods for GGFL on the four data sets. Top: Objective value minus minimum value versus CPU time (seconds); Bottom:
Test loss versus CPU time (seconds). (a) Bio-train. (b) Covtype. (c¢) HIGGS. (d) Epsilon.

our algorithms and theoretical results from the two-block case
as in (1) to the multiblock case [43].
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