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ABSTRACT

Many research works show that the continuous-time Differential
Equations (DEs) allow for a better understanding of traditional
Alternating Direction Multiplier Methods (ADMMs). And many un-
folded algorithms directly inherit the traditional iterations to build
deep networks. Although they obtain a faster convergence rate and
superior practical performance, there is a lack of an appropriate ex-
planation of the unfolded network architectures. Thus, we attempt
to explore the connection between the existing unfolded Linearized
ADMM (LADMM) and numerical DEs, and propose efficient un-
folded network design schemes. First, we present an unfolded Euler
LADMM scheme as a by-product, which originates from the Euler
method for solving first-order DEs. Then inspired by the trapezoid
method in numerical DEs, we design a new more effective network
scheme, called unfolded Trapezoid LADMM scheme. Moreover, we
analyze that the Trapezoid LADMM scheme has higher precision
than the Euler LADMM scheme. To the best of our knowledge,
this is the first work to explore the connection between unfolded
ADMMs and numerical DEs with theoretical guarantees. Finally,
we instantiate our Euler LADMM and Trapezoid LADMM schemes
into ELADMM and TLADMM with the proximal operators, and
ELADMM-Net and TLADMM-Net with convolutional neural net-
works. And extensive experiments show that our algorithms are
competitive with state-of-the-art methods.
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1 INTRODUCTION

In machine learning, we often encounter some constrained opti-
mization problems, which are formulated as the following problem:
min  f(x) +9g(y), st. Ax+y=h, (1)
xeR4 yeR™m
where A € R"™*4 b e R™, f : R? - Rand g : R™ — R are convex
functions but maybe non-smooth. For the more general case with
the constraint Ax + Cy = b, there are some similar algorithms
for it, where C € R™*™_ and this paper mainly focuses on the
case of an identity matrix C. The problem (1) naturally appears in
many multimedia fields [10, 21]. A common application is #;-norm
regularized ill-posed inverse problems, including image denoising,
image inpainting, and compressive sensing (CS) [9, 10, 23, 39]. For
example, many algorithms have achieved good performance in
natural image CS. And in this paper, we propose novel algorithms
for CS problems, which achieve better performance in terms of
quality, speed, and storage cost, as shown in Fig.1.
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Figure 1: Comparison of the results for natural images CS tasks at
CS ratio y = 30% on BSD68 dataset, and the circle size is proportional
to the number of parameters. More results are shown in Table 3.
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To solve Problem (1), ADMM is a common choice [3], which alter-
nately updates the variables in the Gauss-Seidel manner. However,
it suffers from a heavy computational complexity due to performing
matrix inversions. To alleviate this issue, [25] proposed an efficient
LADMM by linearizing the quadratic penalty term. [27] and [14]
introduced a Nesterov momentum term to accelerate ADMM. [7]
proposed Jacobi ADMM to facilitate parallel computing. Besides,
there are other stochastic versions [30, 48] to reduce complexity
of ADMMs. The connection between these traditional ADMMs
is shown in Fig. 2. Nonetheless, it is not trivial to set the hyper-
parameters (e.g., update rates) of traditional ADMMs, and these
algorithms can not meet the high solution speed requirements.
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Figure 2: Traditional ADMMs and unfolded ADMMs as DEs. More
detailed description of this figure is shown in Section 2.

Inspired by the idea of end-to-end learning, many researchers
unfolded the traditional optimization algorithms into deep neural
networks (DNNs) [22, 28, 38], called unfolded algorithms, which
obtained superior performance and interpretability in solving var-
ious ill-posed inverse problems. For example, [6] proposed the
asymptotic coupling between the weights in LISTA [15], which
reduced the trainable parameters and improved the performance of
LISTA. Moreover, [6] first provided the rigorous analysis of a linear
convergence. [24, 26, 40] further improved the network structure
and theoretical insights of LISTA. Besides, compared with DNN-
based methods, [44] shows that unfolded algorithms usually obtain
stronger generalization power on small-scale datasets. As for AD-
MMs, [31, 36, 41, 43] proposed to train some learnable weights, or
introduce certain special network, e.g., convolutional neural net-
work (CNN), for image restoration problems, which can achieve
extraordinary experimental results.

On the other hand, the convergence analysis of unfolded algo-
rithms becomes more difficult than traditional algorithms due to
trainable parameters. Many existing works mainly simplify the
proof by adding constraints to the learned parameters [6, 41], but
their principles are not yet fully understood, which motivates re-
searchers to find a more concise framework to prove convergence.
Recently, by connecting the gradient-based methods and DEs, sig-
nificant progress has been made in bridging this theoretical gap.
For example, [35] formulated a second-order ordinary DE as the
continuous limit of Nesterov’s accelerated gradient method. [32]
regarded the LISTA as a residual network and explained it as the
Euler method in numerical DE. Nevertheless, for the more widely
used unfolded ADMMs, their DEs theoretical behavior remains a
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mystery. To solve this problem, we need a new algorithm design
and theoretical analysis to answer the following questions:

1. Is there a close connection between unfolded ADMMs and nu-
merical discretizations of DEs with theoretical guarantees?

2. Can more accurate numerical discretizations of DEs derive supe-
rior unfolded ADMMs?

Moreover, we find that some unfolded ADMMs can not significantly
improve the data reconstruction performance by increasing the
number of network layers and even worsen. Thus, it is necessary
to design better unfolded ADMMs on small-scale datasets or under
the condition of limited parameter quantities and layers.

Our Contributions: In this paper, we establish a connection be-
tween unfolded ADMMs and numerical discretizations of DEs with
theoretical guarantees. Moreover, we propose novel DEs guided
unfolded ADMM design schemes to obtain superior practice per-
formance and better theoretical results for solving Problem (1). Our
main contributions are listed as follows:

e We first propose a unified framework, named unfolded Euler
LADMM scheme. Then we derive that the Euler LADMM scheme
is closely related to the Euler method for solving first-order approx-
imating DEs in Lemma 1 below.

e The trapezoid method is introduced into unfolded LADMM
to obtain an implicit Trapezoid LADMM scheme. Moreover, our
theoretical result in Theorem 1 shows that the proposed unfolded
Trapezoid scheme has better precision than unfolded Euler scheme.
To reduce the computational burden, we also propose a novel ex-
plicit Trapezoid LADMM scheme, which turns the implicit Trape-
zoid LADMM scheme into an iterative algorithm through the idea
of forecast-correction. Then, we analyze its convergence properties.
To the best of our knowledge, this is the first work to analyze
the unfolded LADMM from the perspective of numerical DEs
with theoretical guarantees. Fig. 2 shows the connections of our
algorithms and related methods.

e For different applications, we also implement the proposed
Euler and explicit Trapezoid LADMM schemes by replacing the non-
linear operators with proximal operators or convolutional networks.
As a result, we design four special algorithms, named ELADMM,
ELADMM-Net, TLADMM, and TLADMM-Net, respectively.

e We first conduct an image denoising task on small-scale datasets,
which confirms that our ELADMM and TLADMM outperform com-
pared algorithms under the condition of limited parameter quantity.
Secondly, we extensively evaluate the advantages of our ELADMM
and TLADMM against ISTA-based networks for image inpainting
tasks. Lastly, we also perform CS tasks to verify the promising
performance of our ELADMM-Net and TLADMM-Net.

2 RELATED WORKS

The connection between numerical DEs and optimization algo-
rithms was observed by [2, 4, 18, 33], which pointed out that opti-
mization algorithms can be regarded as discretizations of DEs. The
basic idea is to make the step size very small so that the solution
path converges to the curve modeled by the DEs. Probably the sim-
plest optimization algorithm related to numerical DEs is gradient
descent (GD). Considering the objective function f(x), if we set the
step size to be infinitesimal, then GD can be viewed as:

X = -Vf(X), @)
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where X = X(t) denotes the continuous limit of x; and X = ‘31—)[(

These findings help researchers analyze optimization algorithms
from the perspective of DEs.

Unfolded ISTA and the Euler Method. Consider LISTA: x;,; =
g(x,b,0) £ ST(W’fb + W’zcxk, 0r), where ST (-) represents the

soft-thresholding operator, and ©; = {Wlf lec Qk} are trainable

parameters. [32] proposed that the LISTA can be viewed as a resid-
ual network with a residual function r(x,b,®) = g(x,b,0) — x.
Then, the iterations of LISTA is formulated as follows:

Xje41 = X + 1(Xg, b, Op), 3)

where r(x,b,0)) generalizes the expression of —Vf(X) in (2).
Thus (3) can be regarded as a discretized Euler method for solving
(2) with initial condition xo = X(0). The ISTA-based networks
have made progress with the help of numerical DEs, but they can
not solve problems with equality constraints. Thus, more general
ADMMs need to be discussed.

Traditional ADMMSs and DEs. Along with the idea of DEs, [12]
proved that the continuity limits of ADMM and A-ADMM are con-
sistent with the first-order and second-order dynamical systems,
respectively. They clarify that the trajectory of the dynamical sys-
tem weakly converges to a minimizer of objective functions, even
in the presence of small perturbations. As for LADMM, whose
iterations for solving Problem (1) are

1
Xpp1 = PrOXLL {Xk - L—lAT (A + B(AX) +y) — b))},

| L@

1
Vi+1 = PrOXL% {Yk - L—Z(lk + f(AXpi1 + ¥k — b))
Ak1 = Ak + B(AXpyq + Yis1 — D),

where Prox is the proximal operator!, A is Lagrange multiplier,
is a penalty parameter, and L, Ly > 0 are Lipsitz constants, [46]
used the differential inclusion tool to analyze it. In addition, [11]
interpreted accelerated ADMM as non-smooth dynamical systems.
[49] applied the stochastic modified equation and asymptotic ex-
pansion to study the dynamics of stochastic ADMM. Furthermore,
it provided a unified framework for different variants of stochastic
ADMM. These ideas are all shown in Fig. 2.

Unfolded ADMM s. As mentioned above, many works show that
the unfolded ADMMs outperform traditional ADMMs. [36, 43] pro-
posed ADMM-CSNet to improve the performance of CS tasks by
rewriting the ADMM procedure into a learnable network. [41] inter-
preted the LADMM as an end-to-end deep network and proposed
an unfolded algorithm, named Differentiable Linearized ADMM
(D-LADMM), for solving Problem (1). Moreover, they provided a
rigorous analysis of the linear convergence. But, D-LADMM can
not significantly improve the data reconstruction performance by
increasing the number of network layers and even worsen. [19]
and [20] proposed GPX-ADMM-Net and Deep Analysis Decoding
(ADMM-DAD) network respectively, which further improved the
performance on visual and speech CS tasks. The connection be-
tween these methods and traditional ADMMs is also shown in
Fig. 2. However, none of the work analyzed the connection between

!"The proximal operator of function f is Prox s, (x) = argmin_ { § ||z — x|+ f(2)}.
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DEs and the unfolded ADMMs. This motivates us to first draw a
relatively comprehensive connection between the architectures of
unfolded LADMM and the discretization methods of DEs. More
importantly, we demonstrate that such a connection enables us to
design new more effective unfolded networks.

Trapezoid Method in Numerical DEs. The trapezoid method approx-
imates the integral of the function f(x) by the trapezoid integral
formula with higher precision compared with the Euler method. In
unfolded algorithms, we concretize it into the following paradigm
with a DE-stepsize h:

Xpp1 = Xp + g [f (xk, Ok) + f (X1, Op)] - (5)

Obviously, this is an implicit method, and it needs to be estimated
by a forecast-correction scheme before each update of xz., ;.

3 OUR SCHEMES FOR UNFOLDED LADMMS

In this section, we find that D-LADMM [41] can be interpreted as
the Euler method in numerical DEs. According to this observation,
we propose a new scheme, called Trapezoid LADMM scheme, which
is inspired by the trapezoid method in numerical DEs.

3.1 Euler Scheme for Unfolded LADMM

Prior works established a connection between unfolded algorithms
for solving unconstrained problems and numerical DEs. And ex-
isting DE’s analysis only focuses on traditional ADMMs. In this
part, we take a step toward how to interpret unfolded ADMMs for
solving constrained problems as numerical discretizations of DEs.

We first unfold LADMM into a unified DEs-inspired DNN, called
unfolded Euler LADMM scheme:

h
Xpep1 = Fp (e + gikka(Xk)),

h
Yir1 = Gy + EGk(Yk)),
Akes1 = Ak + Wi (AXjeyq + Y4 — b)),

where Fi. () = =W (%5 +Ax+yg—b), Gr (y) == (55 +Axps 1 +y-b),
{W, 0k, i, b, By} are learnable parameters, and ¥ and G are non-
linear operators. For example, if # and G are proximal operators,
(6) degenerates to ELADMM and further D-LADMM [41] with
h = 1;if ¥ and Gy are general non-linear operators, e.g., CNNs, (6)
can be used for solving CS problems, and we call it ELADMM-Net in
such case. The clear connection can be seen in Fig. 2. For theoretical
explanation, Lemma 1 offers a new perspective of explaining the
unfolded Euler LADMM scheme.

LEmMMA 1 (UNFOLDED EULER LADMM scHEME AND DEs). Suppose
that f and g are closed convex functions but maybe non-smooth, A has
full column rank, and ¥ and G4 are proximal operators. Then, we con-
sider Problem (1) and optimal trajectory function {X(t),Y(t), A(t)}.
The continuous limit associated with the updates in (6) with time
scale t = kh, corresponds to the first-order approximating DEs:

Vi (X(1) + X (1) = F(X(1)) = 0,X(0) = xo,
Vgu, (Y (1)) +nY (1) = G(Y(1)) = 0,Y(0) = yo, 7)
A(t) = B(AX(t) +Y(#) = b) = 0,A(0) = Ao,
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Figure 3: The k-th stage of Algorithm 1. Note that Fi(x) = —wT(;}f'; +Ax + vk - b), Ge(y) = —(% +Axpsr +y — b), and He (Ag) = Ag +
hfi (AXg+1 + Yi+1 — b). The orange line represents the independent update of each variable, the blue line represents the interaction between the
variables, and most notably, the green line represents the skip connection, just like the identity mapping of the residual network, ResNet [17].

where 0. — 0, ;. — 1 in the limith — 0, Vf,, (-) and Vg, (-) are
the Moreau-Yosida approximation® of of (-) and dg(-) repectively,
F(X(1)) = ~WT(A(t) + B(AX(t) + Y(t) = b)), and G(Y(1)) =
~(A 4 AX() + Y (1) = D).

Lemma 1 indicates that the trajectory of (7) closely resembles the
sequence {Xg, Vi, A} generated by Euler LADMM (6). Specifically,
one can think of the Euler LADMM scheme to solve Problem (1)
as applying the Euler method to solve DEs (7) with the initial con-
ditions x¢ = X(0), yo = Y(0), A9 = A(0). For example, D-LADMM
can be regarded as solving such DEs with DE-stepsize h = 1, while
our Euler LADMM scheme is capable of choosing h more flexibly.
Question 1 in Section 1 has been answered.

3.2 Our Unfolded Trapezoid LADMM Scheme

We have shown above that some unfolded ADMMs can be inter-
preted as the Euler method in DEs, which broadens our horizons to
design unfolded LADMM networks. To further explore the struc-
tural diversity of unfolded networks and improve the accuracy of
the Euler LADMM scheme, we propose a new scheme, dubbed the
unfolded Trapezoid LADMM scheme, and interpret its connection
with DEs.

3.2.1 Implicit Trapezoid LADMM scheme and DEs. As discussed
above, we can regard the Euler LADMM scheme as the Euler method
to solve the first-order DEs. In this subsection, we introduce the
trapezoid method into the update of x and y, and propose an implicit
Trapezoid LADMM scheme for Problem (1) as follows:

h
ot = 77 it 20 () i) )

h
Yie1 = Gy (Wﬁa (Gk(Yk)+Gk(Yk+1))), ®)

Ak+1 = Ak + i (AXpyq + Vi1 — ).

2The Moreau-Yosida approximation of a convex function f with parameter i > 0
is defined as f,,(x) = inf {f(z) + il\z - xllz}. For any p > 0, f,, is a convex,
z

continuously differentiable function [46].

Similarly, we find that the implicit Trapezoid LADMM scheme (8)
also recasts as the approximating DEs (7) by Lemma 2.

LEMMA 2 (UNFOLDED ImPLICIT TRAPEZOID LADMM SCHEME AND
DEs). The same notations and assumptions as in Lemma 1 are used.
The continuous limit associated with the implicit Trapezoid LADMM
scheme (8), with time scale t = hk, also corresponds to the first-order
approximating DEs (7).

Lemma 2 shows that the implicit Trapezoid LADMM scheme (8)
for Problem (1) solves the same first-order approximating DEs (7).
And from Theorems 15.1 - 15.5 in [1], we know that the existence
and uniqueness of solutions of DEs (7) can be ensured under the
condition of Lipschitz continuity. Therefore, we can further fairly
compare the precision of our two schemes.

3.2.2  Advantages of Trapezoid LADMM scheme over Euler LADMM
scheme. Theorem 1 explains that the Trapezoid LADMM scheme
is more accurate than the Euler LADMM scheme under certain
circumstances.

THeOREM 1. Suppose that 1) f and g are L p-smooth and Lg-smooth
respectively; 2) Fy and G4 are non-expansive mappings. Then the
local and global error bound of the implicit Trapezoid LADMM scheme
(8) are O(h3) and O(h?), while the local and global error bound of
the Euler LADMM scheme (6) are O(h?) and O(h), respectively.

Theorem 1 shows that the lower error bound of the Trapezoid
LADMM scheme can be obtained under the mild assumptions. In
fact, Theorem 1 almost holds when f and g are special non-smooth
functions, such as ¢;-norm, which will be analyzed in the Appendix.
Moreover, we can know that each updated point of the Trapezoid
LADMM scheme will be closer to the optimal trajectory, thus reduc-
ing the deviation from the optimal trajectory. Therefore, it can be
understood to improve the convergence speed to a certain extent.

3.2.3 A Practical Scheme: Explicit Trapezoid LADMM. The implicit
scheme (8) requires a solution to solve the equations w.r.t. x and
y, respectively, which are computationally intractable. To solve
this problem, we propose an explicit Trapezoid LADMM scheme
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Algorithm 1 Our Explicit Trapezoid LADMM Scheme

Input: A, hyper-parameter «, the layer number K, the training
dataset D = {(b’, x’)}l].\i1

Initialize: x¢, yo, Ao, learnable parameters ® = {W,h,0,
Nks ﬁk}k 't note that ai = h , C = ’ZC
Inference:

1: Choose mini-batch observations b of size Ny, from D, Np is the
size of each x, and K is the number of layers;
2: fork=0,1,...,K—1do
3 Xpgt =7—}(xk + ﬂk Fk(xk)) //forecast step
4 X =Fp(xp + Zak [Fr(xg) + Fy.(Xk41)]); //correction step
5 Vi1 =Gg(yk + —Gk(yk)) //forecast step
6 Vi =Gylye + 7 [Gr(yi) + G (Fs1)]): /lcorrection step
7 A=Ak + Py (AXpy + i1 = b);
s: end for
Training;:
9: if the ground truth x* of observation b exists then
R 1 K k %112 2).
10:  Loss; = ming mzkzl ﬂ(”xk =x*I“+ lyx = ¥*Il ),
11: else
122 Lossy = ming ﬁl\lpzlkil ﬁ(f(xk) +g(b-Axp));
13: end if
Output: M(D;0) = xg.

as shown in Algorithm 1. Specifically, we design the forecast step
w.r.t X, and then use Fj.(X,;) in step 4 of Algorithm 1 instead of
Fi(Xg+1) in (8) as well as y. Similarly, #¢ and Gy are non-linear
operators and vary in different applications. For example, 1) for ¢;-
norm, if ¥ and G, are proximal operators, Algorithm 1 degenerates
to TLADMM, and if 7—} and Gy are general non-linear operators,
e.g., CNNs, Algorithm 1 can be used for CS problems, and we call it
TLADMM-Net in such case; 2) for £,-norm, the non-linear operator
degenerates into an identity one or matrix inversion. Compared
with the Euler LADMM scheme, although there are two more aux-
iliary variables X and ¥, the experimental performance is much
better at the cost of increasing the limited time. Here we keep each
learnable variable for the convenience of our proofs. It is worth
noting that the learnable parameters {h, O, ni, P } are all scalars
rather than vector or matrix, which reduces parameter redundancy
to adapt to small-scale datasets. We design the training loss function
as the weighted multi-layer loss, which alleviates the vanishing
gradient problem for deep networks. When there does not exist
ground truth, we utilize its model objective as a loss function.

Fig. 3 shows the k-th block architecture of the explicit Trapezoid
LADMM scheme, which can be viewed as the k-th stage of inference.
Compared with the methods plugging in a pre-trained DNN as
denoiser [16], our networks are end-to-end trained, without relying
on any pre-trained network. It is worth noting that ¥, and G
are simulated by simple CNNss in Fig. 3 for generality. Due to the
introduction of the trapezoid method, each parameter update is first
a forward trial procedure, followed by a further correction, so we
can know that a well-trained Trapezoid LADMM scheme M(D; ©)
can be seen as a traditional iterative with better parameters for the
distribution of the training data.
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4 CONVERGENCE ANALYSIS

The errors of our schemes have been analyzed from the perspective
of DEs. This section provides the convergence analysis of our ex-
plicit Trapezoid LADMM scheme from the perspective of unfolded
algorithms. We will focus on the cases where ¥ and G are the
proximal operators about the f and g, respectively. We sketch the
main proofs as follows.

Proof sketch: We first analyze that our explicit Trapezoid LADM-
M scheme converges to the implicit Trapezoid LADMM scheme.
Then, we refer to D-LADMM and prove the convergence of our im-
plicit Trapezoid LADMM scheme by Theorem 2. Finally, the linear
convergence rate of our schemes can be also obtained.

ASSUMPTION 1. Suppose that %Lx <1, 2,7 Ly < 1, where Ly
and Ly are the maximal Lipschitz constants of the sequences {Fj.(-)}
and {Gi (-)} with respect to x andy, respectively, and ¥ and G are
non-expansive.

Firstly, in (8), xg,1 and y,q can be regarded as fixed points, and
we can adopt the iterative technique. We set:

: h .
() _ 7—}(xk+%(Fk(xk)+Fk(x](cl+)1))),

©)

(i+1) _ h (i)

Yier1 gg(Yk”L%(Gk(Yk)+Gk(Yk+1)))’
Ak+1 = Ak + b (AXpyq + Yiee1 — D),

(0)

where X, isan initial estimation. If Assumption 1 holds, (9) con-
verges to (8) for i large enough. For ease of illustration, we set i = 0
and introduce the x- and y-step of the Euler LADMM scheme to
estimate X2+1 and yzﬂ in Algorithm 1. Secondly, we give the proof
of Theorem 2 in the Appendix with reference to D-LADMM [41].

THEOREM 2 (CONVERGENCE OF IMPLICIT TRAPEZOID LADMM
SCHEME). Let the sequence {@ = (Xj, Yk, —Ax) ' } be generated by
the implicit Trapezoid LADMM scheme (8), then there exists ® € S(¢)
such that {wy} converges to a solution * of Problem (1).

Theorem 2 plays a key role in further proving a linear conver-
gence rate of Algorithm 1. Theorem 2 shows the proposed implicit
Trapezoid LADMM scheme can asymptotically converge to the
solution of Problem (1). And if & is small enough to satisfy Assump-
tion 1, then the explicit Trapezoid LADMM scheme also converges
to the same solution. Finally, following D-LADMM [41] and Theo-
rem 2 in this paper, we still gain the linear convergence rate of the
proposed algorithms. In particular, the proposed Algorithm 1 can
achieve a faster convergence speed than D-LADMM in practice,
which can be verified by the results in the next section.

5 EXPERIMENTS

In this section, we perform various multimedia applications to verify
the effectiveness of our methods. We first test # and G as simple
non-linear operators, i.e., soft-thresholding operator, in Subsections
5.1-5.3, and we call our scheme (6) and Algorithm 1 as ELADMM
and TLADMM, respectively. Then we use CNN to simulate general
Fr and Gy to solve the CS problems in Subsections 5.4-5.6, and
we call them ELADMM-Net and TLADMM-Net, respectively. We
initialize fy and h as small values to find the next point on a larger
scale and meet Assumption 1, respectively. For fair comparison, the
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Table 1: Comparison of the denoising results in terms of PSNR (dB) with salt-and-pepper noise rate 10%. The best and second
best results are highlighted in red and blue colors, respectively.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time (s)
D-LADMM (K =15, [41]) 32.12 31.16 2636 31.63 31.44 3253 35.23 31.06 24.75 34.66 3482 37.82 31.97 0.2756
D-LADMM (K =30, [41]) 30.55 30.23 25.67 30.78 30.11 31.46 34.50 30.12 23.24 32.12 34.13  35.62 30.71 0.5685
ELADMM (K =15, Ours) 32.07 31.38 26.45 3149 31.68 3237 35.67 30.88 23.96 34.20 3432 37.92 31.87 0.2748
TLADMM (K=8, Ours) 33.36 33.29 27.94 3298 33.65 3439 37.75 3294 24.58 34.13 36.43  39.30 33.39 0.2701
TLADMM (K=15, Ours) 34.46 33.40 28.26 33.65 3430 3458 39.33 3324 25.07 34.92 37.06  40.27 34.04 0.5031

number of network layers is set to match the compared algorithms
rather than a default value.

5.1 Synthetic Data

We first evaluate the effectiveness of our methods on a small-scale
synthetic dataset similar to [41]. We consider the following con-
strained model:

(10)

where b € R™ is an observation, x is what to recover, y denotes
the noise to be removed and « is a hyper-parameter that balances
the recovery result and denoising performance. In this experiment,
we set m=250,d=500 and apply the Bernoulli sampling operator
(with probability p=0.08 and 0.1) on both x and y.

mina|[x[l; + [lyll;, st Ax+y=bh,
Xy

0
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Figure 4: Comparison of the NMSE performance on synthetic
datasets. Left: p = 0.08; Right: p = 0.1.

For Problem (10), our ¢ and G4 both degenerate into the soft-
thresholding operator, and we adopt the stochastic gradient de-
scend (SGD) algorithm to train D-LADMM [41], our ELADMM,
and our TLADMM. We choose Normalized Mean Square Error
(NMSE) to measure the performance of all methods. From Fig. 4, we
observe that in the case of linear convergence rate, ELADMM per-
forms slightly better than D-LADMM due to ELADMM choosing h
more flexibly. And TLADMM performs significantly better than D-
LADMM and ELADMM, which verifies the conclusion in Theorem
1. Note that ISTA-based networks can not solve this problem.

5.2 Natural Image Denoising

We further utilize natural images to evaluate the denoising per-
formance and verify the stability of our TLADMM on small-scale
datasets. The training and testing datasets are the same as in [41]
and the denoising performance is evaluated with Peak Signal-to-
Noise Ratio (PSNR). For dictionary A in (10), the patch-dictionary

method [42] is used to initialize it. We consider the situation where
the ground truth is unknown and thus train our methods by using
the following model loss function:

1
Lossy = min
[C] Npr

5k
D5 (@ el + 1Ax =Bll;). (1)
k=1 2

Table 1 shows that our TLADMM with K=15 can improve the
denoising performance by about 2.1/2.2 dB on average compared
with D-LADMM/ELADMM, respectively. The underlying reason is
that TLADMM is more accurate, and the points closer to the optimal
trajectory of x- and y- subproblem can be obtained in one iteration,
while D-LADMM or ELADMM only corresponds to applying the
Euler method with lower precision. Moreover, taking the model loss
as the training loss function imposes strict constraints on the solu-
tion, which can be seen as an alternative to the absence of ground
truth. From Algorithm 1 and Table 1, although our TLADMM has
two auxiliary steps, it performs better at almost the same time cost.
Thus, our TLADMM can improve the denoising performance under
fewer network layers or parameters. In short, these all verify that a
more accurate method for solving the first-order DEs can guide the
design of better unfolded LADMM networks.

5.3 Natural Image Inpainting

We also perform our ELADMM and TLADMM on image inpainting
compared with ISTA-based networks and D-LADMM [41], which
will show advantages over ISTA-based networks, and indicate that
the introduction of the trapezoid method can improve the perfor-
mance of unfolded networks in different applications.

We assume that the image is corrupted by a known mask M
with a ratio of r% missing pixels, and the inpainting problem can
be formulated as follows:

min a||x||; + lllyllg, s.t. MDx+y = b, (12)
X,y 2

where b is a corrupted image block, A = MD, the dictionary D is
obtained from training clean images, and « is a hyper-parameter
that balances the recovery result and sparsity. Note that ¥ and Gy
degenerate into a soft-thresholding operator and a constant trans-

I f;k I (+), respectively. The learned solver M(D; ©) has

a natural advantage - avoiding O(d®) computational complexity
due to matrix-matrix multiplications and matrix inversions in ex-
isting ADMM-based unfolded networks.

We set the number of the layers K=20 in all the networks, and
the PSNR results are listed in Table 2. We observe that ELADMM

formation
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Table 2: Comparison of image inpainting results in terms of PSNR (dB) on the dataset Set11 with 50% missing pixels.

Algorithms Barb Boat House Lena Peppers C.man Flinstones Finger Parrot Foreman Monarch Ave. (dB)
LFISTA (ICLR2017, [29]) 26.13 30.02 3255 32.65 28.84 27.24 26.53 28.35 31.03 30.65 28.17 29.29
GLISTA (ICLR2019, [40]) 25.52 28.76 31.04 31.18 27.64 25.85 24.32 26.35 29.44 29.24 26.07 27.76
D-LADMM (ICML2019, [41]) 26.51 30.91 34.11 3431 29.834 27.44 27.04 29.95 32.44 31.84 28.82 30.29
ELISTA (AAAI2021, [24]) 26.75 30.55 32.84 3294 29.64 27.68 24.40 28.52  30.95 30.85 26.45 29.23
ELADMM (Ours) 26.54 30.84 34.15 34.55 29.75 27.48 27.11 29.85  32.62 31.95 28.99 30.35
TLADMM (Ours) 27.08 31.58 34.75 35.08 30.09 27.94 27.69 30.38  33.61 32.45 29.45 30.91

8.0 25.85 27.24 27.68 27.44 27.48 27.94

BERDODE

10.2 29.44 31.03 30.95 32.44 32.62 33.61

Figure 5: Comparison of visual results and PSNR (dB) for the image
inpainting with 50% missing pixels. From left to right: ground truth
(GT), corrupted image, and the results of GLISTA [40], LFISTA [29],
ELISTA [24], D-LADMM [41], ELADMM (Ours) and TLADMM (Ours).

and TLADMM consistently outperform the ISTA-based networks,
LFISTA, GLISTA, and ELISTA. In addition, it is clear that the av-
erage PSNR of our TLADMM is about 0.6 dB higher than that of
D-LADMM. Finally, Fig. 5 shows the visual performance of different
methods on Cameraman (called C.man) and Parrot. It can be seen
that our TLADMM can restore the highest image quality.

5.4 Natural Image Compressive Sensing

Our methods can also be easily extended to solve the CS inverse
problem. Here we will show the advantages of our methods when
¥ and G4 are more general non-linear operators. By introducing
an auxiliary variable y, the CS model can be expressed as follows:

1 2
min —||¢c — &x||* + ||V ,st.x=y, 13
nir 2|I Il ¥yllx y (13)

where ® € R™ is an under-sampling matrix, x is vectorized
image, the CS measurement of x is denoted by ¢, b = 0, A =1,
and ¥ denotes a transformation matrix for a filtering operation,
e.g., Discrete Cosine Transform and Discrete Wavelet Transform.
Formally, we replace ¥ with a non-linear transformation 7 (-) to
sparsify natural images, where 7 (-) adopts a simple CNN as in
[47]. And the non-linear operator #(z) degenerates into Qg (z+e¢),
where Q; = (®T® + f)7!, and Gy(-) = ‘7~'(ST(‘T(~))), where
ST(-) denotes the soft-thresholding operator. In fact, we also avoid
matrix inversions in existing ADMM-based unfolded networks by
linearizing quadratic terms, so the computational complexity of our
methods can be further reduced.

For fair comparison, we select the same Train400 dataset as in
[44] containing large numbers of various scenarios to train our un-
folded networks. We used the Adam optimizer and all the methods

were trained up to 400 epochs. As for testing, we utilize two widely-
used datasets: Set11 and BSD68, and reconstructed performance
is evaluated by computing PSNR. We refer to the partial results in
[44] for some compared algorithms.

As shown in Table 3, our TLADMM-Net with K =10 achieves at
least 0.92/0.72 dB PSNR improvement over other algorithms on the
BSD68/Set11 datasets on average, which fully verifies the effective-
ness of our Trapezoid scheme and reduction of the number of layers.
If we set K =20 to train our TLADMM-Net, recovery performance
will be further improved. Compared with several recently proposed
networks, the reconstruction time of our schemes is competitive,
and the number of network parameters is reduced. Fig.1 shows the
details of all the algorithms for PSNR, reconstruction time, and the
number of network parameters on BSD68 at CS ratio y = 30%.

5.5 Speech Data Compressive Sensing

Moreover, we also consider other multimedia applications, speech
CS, whose model is the same as (13), but x represents vectorized
speech. We train our methods on two speech datasets, SpeechCom-
mands and TIMIT, and we take 70% of the datasets for training and
30% for testing. We perform the same preprocessing as ADMM-DAD
[20] on the raw speech data and execute the codes of ISTA-Net™ [47]
and ADMM-DAD as baselines.

0
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Time
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Time

0
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Figure 6: Comparison of the visual results for the speech CS task
at y =40% on TIMIT. Upper left, upper right, lower left and lower
right: the spectrograms of ground truth, and the results of ADMM-
DAD [20], ELADMM-Net (Ours) and TLADMM-Net (Ours).
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Table 3: Comparison of performance for image compressive sensing in terms of PSNR (dB) under different CS ratios y = 10%, 20%, 30%, 40%, 50%
on the BSD68 and Set11 datasets. As we can see, our networks achieve the best results under all CS ratios.

. Dataset: BSD68 Dataset: Set11

Algorithms

10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.
ISTA-Net* (CVPR2018, [47]) 25.24 28.00 30.20 32.10 33.93 29.89 26.57 30.85 33.74 36.05 38.05 33.05
DPDNN (TPAMI2019, [8]) 24.81 27.28 29.22 30.99 32.74 29.01 26.09 29.75 32.37 34.69 36.83 31.95
GDN (TCI2019, [13]) 25.19 27.95 29.88 32.07 34.09 29.84 26.03 30.16 32.95 35.25 37.60 32.40
CSCNet (CVPR2019, [34]) 27.28 29.01 31.87 33.86 35.77 31.56 28.48 31.95 34.62 36.92 39.01 34.20
DPA-Net (TIP2020, [37]) 25.33 - 29.58 - - - 27.66 - 33.60 - - -
MAC-Net (ECCV2020, [5]) 25.70 28.23 30.10 31.89 33.37 29.86 27.92 31.54 33.87 36.18 37.76 33.45
COAST (TIP2021, [45]) 26.28 29.00 32.10 32.93 34.74 31.01 28.69 32.54 35.04 37.13 38.94 34.47
ISTA-Net™ (ICME2021, [44]) 26.25 29.00 31.10 33.00 34.85 30.84 28.34 32.33 34.86 36.94 38.73 34.24
GPX-ADMM-Net (2021, [19]) 25.30 27.79 29.32 31.99 33.25 29.53 27.46 31.36 33.85 36.28 38.32 33.45
ELADMM-Net (K =20, Ours) 27.01 29.53 32.01 33.89 35.82 31.65 28.34 32.51 34.72 37.32 38.71 34.32
TLADMM-Net (K =10, Ours) 27.76 30.38 32.68 34.78 36.82 32.48 28.95 32.81 35.73 38.18 40.32 35.19
TLADMM-Net (K =20, Ours) 27.97 30.59 32.96 35.05 37.15 32.74 29.21 33.20 36.06 38.58 40.83 35.57

We choose a column orthogonal measurement matrix ® to down-
sample raw speech data. We use the Adam optimizer and train
100 epochs for all the methods with K = 10. We set Loss; as the
loss function, and use MSE = % Z?:l [IM(bi;©) — xi||? as a test
criterion, where ¢ is the number of test samples. The recovered
performance is shown in Table 4. It can be seen that the MSE of
our ELADMM-Net and TLADMM-Net is always lower than the
baselines. Furthermore, we extract the spectrograms of an example
test raw audio file in TIMIT as shown in Fig. 6. It can be clearly
seen that our ELADMM-Net and TLADMM-Net distinguish more
frequencies than ADMM-DAD, and TLADMM-Net further removes
the noise of ELADMM-Net.

Table 4: Comparison of the test MSE results under the CS ratios
Y = 25%,40% on the speech datasets.

TIMIT
25% 40%

SpeechCommands
25% 40%

Algorithms

ISTA-Net* [47]
ADMM-DAD [20]
ELADMM-Net (Ours)

0.58x107% 0.46x10~2
0.25%1072 0.13x1072
0.17x1072 0.78%1073

0.22x1073 0.20x1073
0.79%x10~% 0.42x1074
0.68x10™% 0.40x1074

TLADMM-Net (Ours)|0.16x10~2 0.80x1073{0.51x10~% 0.22x10~*

5.6

To demonstrate the generalization ability of our schemes, we also
extend our schemes to the MRI reconstruction. Following previ-
ous practices, we set ® =PF for Problem (13), where P is a mask
and F is the discrete Fourier transform. The sampling pattern is
the commonly used pseudo radial sampling. We train and test our
networks on the same brain MRI dataset as ADMM-Net [36] and
ISTA-Net" [47]. Our networks are separately trained for each sam-
pling ratio with K=10 and the reconstruction results are shown in
Table 5. It can be seen that our networks outperform ADMM-Net
in terms of both PSNR and runtime, and our TLADMM-Net out-
performs our ELADMM-Net in the case of increased limited time
cost. Note that our networks are comparable to the reconstruction
result of ISTA-Net*, but the runtime is increased, which is mainly

MRI Compressive Sensing

due to the complexity of ADMM itself. Compared with ADMM-Net,
the reconstruction time of TLADMM-Net is reduced by two-thirds
because ADMM-Net requires matrix inversions.

Table 5: Comparison of test PSNR (dB) and runtime (s) for MRI CS
with CS ratios y = 20%, 30%, 40%, 50% on the brain dataset. The last
column is average GPU time for reconstructing a 256 X 256 image.

Algorithms 20%  30%  40%  50% | Time
ADMM-Net [36] 37.17 39.84 41.56 43.00 | 0.046
ISTA-Net [47] 38.30 40.52  42.12  43.60 | 0.006
ISTA-Net* [47] 38.73  40.89 4252 44.09 | 0.007
ELADMM-Net (Ours) | 38.31 40.21 42.12 43.66 | 0.007
TLADMM-Net (Ours) | 38.72 40.81 42,57 44.15 | 0.013

6 CONCLUSIONS AND FUTURE WORK

In this paper, a novel scheme of designing unfolded LADMM net-
works was proposed. The connection between existing unfolded
algorithms and DEs was firstly analyzed, and then the trapezoid
method was introduced into unfolded LADMMs to obtain a novel
Trapezoid LADMM scheme. Furthermore, we analyzed the error
bound and convergence of the proposed Trapezoid LADMM scheme.
Extensive experimental results verified the Trapezoid LADMM
scheme superior to the existing methods, which provides strong
support for “higher precision numerical methods can derive better
unfolded ADMMs". We anticipate that these results will provide new
insights on understanding unfolded ADMM networks for solving
machine learning problems. In the future, we will further explore
the connections between other higher-order numerical methods
(e.g., the multi-step method) and unfolded ADMMs.
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