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ABSTRACT

Many research works show that the continuous-time Differential

Equations (DEs) allow for a better understanding of traditional

Alternating Direction Multiplier Methods (ADMMs). And many un-

folded algorithms directly inherit the traditional iterations to build

deep networks. Although they obtain a faster convergence rate and

superior practical performance, there is a lack of an appropriate ex-

planation of the unfolded network architectures. Thus, we attempt

to explore the connection between the existing unfolded Linearized

ADMM (LADMM) and numerical DEs, and propose efficient un-

folded network design schemes. First, we present an unfolded Euler

LADMM scheme as a by-product, which originates from the Euler

method for solving first-order DEs. Then inspired by the trapezoid

method in numerical DEs, we design a new more effective network

scheme, called unfolded Trapezoid LADMM scheme. Moreover, we

analyze that the Trapezoid LADMM scheme has higher precision

than the Euler LADMM scheme. To the best of our knowledge,

this is the first work to explore the connection between unfolded

ADMMs and numerical DEs with theoretical guarantees. Finally,

we instantiate our Euler LADMM and Trapezoid LADMM schemes

into ELADMM and TLADMM with the proximal operators, and

ELADMM-Net and TLADMM-Net with convolutional neural net-

works. And extensive experiments show that our algorithms are

competitive with state-of-the-art methods.
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1 INTRODUCTION

In machine learning, we often encounter some constrained opti-

mization problems, which are formulated as the following problem:

min
x∈R𝑑 ,y∈R𝑚

𝑓 (x) + 𝑔(y), s.t. Ax + y = b, (1)

whereA ∈ R𝑚×𝑑 , b ∈ R𝑚 , 𝑓 : R𝑑 → R and𝑔 : R𝑚 → R are convex

functions but maybe non-smooth. For the more general case with

the constraint Ax + Cy = b, there are some similar algorithms

for it, where C ∈ R𝑚×𝑚 , and this paper mainly focuses on the

case of an identity matrix C. The problem (1) naturally appears in

many multimedia fields [10, 21]. A common application is ℓ1-norm
regularized ill-posed inverse problems, including image denoising,

image inpainting, and compressive sensing (CS) [9, 10, 23, 39]. For

example, many algorithms have achieved good performance in

natural image CS. And in this paper, we propose novel algorithms

for CS problems, which achieve better performance in terms of

quality, speed, and storage cost, as shown in Fig.1.

Figure 1: Comparison of the results for natural images CS tasks at

CS ratio 𝛾 = 30% on BSD68 dataset, and the circle size is proportional

to the number of parameters. More results are shown in Table 3.
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To solve Problem (1), ADMM is a common choice [3], which alter-

nately updates the variables in the Gauss-Seidel manner. However,

it suffers from a heavy computational complexity due to performing

matrix inversions. To alleviate this issue, [25] proposed an efficient

LADMM by linearizing the quadratic penalty term. [27] and [14]

introduced a Nesterov momentum term to accelerate ADMM. [7]

proposed Jacobi ADMM to facilitate parallel computing. Besides,

there are other stochastic versions [30, 48] to reduce complexity

of ADMMs. The connection between these traditional ADMMs

is shown in Fig. 2. Nonetheless, it is not trivial to set the hyper-

parameters (e.g., update rates) of traditional ADMMs, and these

algorithms can not meet the high solution speed requirements.

ADMM [3] 
(first-order 

DE [12])

LADMM [25] 
(first-order 

DE [46])

Jacobi 
ADMM [7]
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Figure 2: Traditional ADMMs and unfolded ADMMs as DEs. More

detailed description of this figure is shown in Section 2.

Inspired by the idea of end-to-end learning, many researchers

unfolded the traditional optimization algorithms into deep neural

networks (DNNs) [22, 28, 38], called unfolded algorithms, which

obtained superior performance and interpretability in solving var-

ious ill-posed inverse problems. For example, [6] proposed the

asymptotic coupling between the weights in LISTA [15], which

reduced the trainable parameters and improved the performance of

LISTA. Moreover, [6] first provided the rigorous analysis of a linear

convergence. [24, 26, 40] further improved the network structure

and theoretical insights of LISTA. Besides, compared with DNN-

based methods, [44] shows that unfolded algorithms usually obtain

stronger generalization power on small-scale datasets. As for AD-

MMs, [31, 36, 41, 43] proposed to train some learnable weights, or

introduce certain special network, e.g., convolutional neural net-

work (CNN), for image restoration problems, which can achieve

extraordinary experimental results.

On the other hand, the convergence analysis of unfolded algo-

rithms becomes more difficult than traditional algorithms due to

trainable parameters. Many existing works mainly simplify the

proof by adding constraints to the learned parameters [6, 41], but

their principles are not yet fully understood, which motivates re-

searchers to find a more concise framework to prove convergence.

Recently, by connecting the gradient-based methods and DEs, sig-

nificant progress has been made in bridging this theoretical gap.

For example, [35] formulated a second-order ordinary DE as the

continuous limit of Nesterov’s accelerated gradient method. [32]

regarded the LISTA as a residual network and explained it as the

Euler method in numerical DE. Nevertheless, for the more widely

used unfolded ADMMs, their DEs theoretical behavior remains a

mystery. To solve this problem, we need a new algorithm design

and theoretical analysis to answer the following questions:

1. Is there a close connection between unfolded ADMMs and nu-

merical discretizations of DEs with theoretical guarantees?

2. Can more accurate numerical discretizations of DEs derive supe-

rior unfolded ADMMs?

Moreover, we find that some unfolded ADMMs can not significantly

improve the data reconstruction performance by increasing the

number of network layers and even worsen. Thus, it is necessary

to design better unfolded ADMMs on small-scale datasets or under

the condition of limited parameter quantities and layers.

Our Contributions: In this paper, we establish a connection be-

tween unfolded ADMMs and numerical discretizations of DEs with

theoretical guarantees. Moreover, we propose novel DEs guided

unfolded ADMM design schemes to obtain superior practice per-

formance and better theoretical results for solving Problem (1). Our

main contributions are listed as follows:

•We first propose a unified framework, named unfolded Euler

LADMM scheme. Then we derive that the Euler LADMM scheme

is closely related to the Euler method for solving first-order approx-

imating DEs in Lemma 1 below.

• The trapezoid method is introduced into unfolded LADMM

to obtain an implicit Trapezoid LADMM scheme. Moreover, our

theoretical result in Theorem 1 shows that the proposed unfolded

Trapezoid scheme has better precision than unfolded Euler scheme.

To reduce the computational burden, we also propose a novel ex-

plicit Trapezoid LADMM scheme, which turns the implicit Trape-

zoid LADMM scheme into an iterative algorithm through the idea

of forecast-correction. Then, we analyze its convergence properties.

To the best of our knowledge, this is the first work to analyze

the unfolded LADMM from the perspective of numerical DEs

with theoretical guarantees. Fig. 2 shows the connections of our

algorithms and related methods.

• For different applications, we also implement the proposed

Euler and explicit Trapezoid LADMM schemes by replacing the non-

linear operators with proximal operators or convolutional networks.

As a result, we design four special algorithms, named ELADMM,

ELADMM-Net, TLADMM, and TLADMM-Net, respectively.

•Wefirst conduct an image denoising task on small-scale datasets,

which confirms that our ELADMM and TLADMM outperform com-

pared algorithms under the condition of limited parameter quantity.

Secondly, we extensively evaluate the advantages of our ELADMM

and TLADMM against ISTA-based networks for image inpainting

tasks. Lastly, we also perform CS tasks to verify the promising

performance of our ELADMM-Net and TLADMM-Net.

2 RELATEDWORKS

The connection between numerical DEs and optimization algo-

rithms was observed by [2, 4, 18, 33], which pointed out that opti-

mization algorithms can be regarded as discretizations of DEs. The

basic idea is to make the step size very small so that the solution

path converges to the curve modeled by the DEs. Probably the sim-

plest optimization algorithm related to numerical DEs is gradient

descent (GD). Considering the objective function 𝑓 (x), if we set the
step size to be infinitesimal, then GD can be viewed as:

�X = −∇𝑓 (X), (2)
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where X = X(𝑡) denotes the continuous limit of x𝑘 and �X ≡ dX
d𝑡 .

These findings help researchers analyze optimization algorithms

from the perspective of DEs.

Unfolded ISTA and the Euler Method. Consider LISTA: x𝑘+1 =
g(x𝑘 , b,Θ𝑘 ) � 𝑆𝑇 (W𝑘

1b +W𝑘
2x𝑘 , 𝜃𝑘 ), where 𝑆𝑇 (·) represents the

soft-thresholding operator, and Θ𝑘 =
{
W𝑘

1 ,W
𝑘
2 , 𝜃𝑘

}
are trainable

parameters. [32] proposed that the LISTA can be viewed as a resid-

ual network with a residual function r(x, b,Θ) = g(x, b,Θ) − x.

Then, the iterations of LISTA is formulated as follows:

x𝑘+1 = x𝑘 + r(x𝑘 , b,Θ𝑘 ), (3)

where r(x𝑘 , b,Θ𝑘 ) generalizes the expression of −∇𝑓 (X) in (2).

Thus (3) can be regarded as a discretized Euler method for solving

(2) with initial condition x0 = X(0). The ISTA-based networks

have made progress with the help of numerical DEs, but they can

not solve problems with equality constraints. Thus, more general

ADMMs need to be discussed.

Traditional ADMMs and DEs. Along with the idea of DEs, [12]

proved that the continuity limits of ADMM and A-ADMM are con-

sistent with the first-order and second-order dynamical systems,

respectively. They clarify that the trajectory of the dynamical sys-

tem weakly converges to a minimizer of objective functions, even

in the presence of small perturbations. As for LADMM, whose

iterations for solving Problem (1) are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x𝑘+1 = Prox 𝑓
𝐿1

{
x𝑘 −

1

𝐿1
A� (𝝀𝑘 + 𝛽 (Ax𝑘 + y𝑘 − b)

)}
,

y𝑘+1 = Prox 𝑔
𝐿2

{
y𝑘 −

1

𝐿2

(
𝝀𝑘 + 𝛽 (Ax𝑘+1 + y𝑘 − b)

)}
,

𝝀𝑘+1 = 𝝀𝑘 + 𝛽 (Ax𝑘+1 + y𝑘+1 − b),

(4)

where Prox is the proximal operator1, 𝝀 is Lagrange multiplier, 𝛽
is a penalty parameter, and 𝐿1, 𝐿2 > 0 are Lipsitz constants, [46]

used the differential inclusion tool to analyze it. In addition, [11]

interpreted accelerated ADMM as non-smooth dynamical systems.

[49] applied the stochastic modified equation and asymptotic ex-

pansion to study the dynamics of stochastic ADMM. Furthermore,

it provided a unified framework for different variants of stochastic

ADMM. These ideas are all shown in Fig. 2.

Unfolded ADMMs. As mentioned above, many works show that

the unfolded ADMMs outperform traditional ADMMs. [36, 43] pro-

posed ADMM-CSNet to improve the performance of CS tasks by

rewriting the ADMMprocedure into a learnable network. [41] inter-

preted the LADMM as an end-to-end deep network and proposed

an unfolded algorithm, named Differentiable Linearized ADMM

(D-LADMM), for solving Problem (1). Moreover, they provided a

rigorous analysis of the linear convergence. But, D-LADMM can

not significantly improve the data reconstruction performance by

increasing the number of network layers and even worsen. [19]

and [20] proposed GPX-ADMM-Net and Deep Analysis Decoding

(ADMM-DAD) network respectively, which further improved the

performance on visual and speech CS tasks. The connection be-

tween these methods and traditional ADMMs is also shown in

Fig. 2. However, none of the work analyzed the connection between

1The proximal operator of function 𝑓 is Prox𝑓 𝑎 (𝑥 ) = argmin𝑧 {
𝑎
2 ‖𝑧 − 𝑥 ‖2 + 𝑓 (𝑧 ) }.

DEs and the unfolded ADMMs. This motivates us to first draw a

relatively comprehensive connection between the architectures of

unfolded LADMM and the discretization methods of DEs. More

importantly, we demonstrate that such a connection enables us to

design new more effective unfolded networks.

Trapezoid Method in Numerical DEs. The trapezoid method approx-

imates the integral of the function 𝑓 (x) by the trapezoid integral

formula with higher precision compared with the Euler method. In

unfolded algorithms, we concretize it into the following paradigm

with a DE-stepsize ℎ:

x𝑘+1 = x𝑘 +
ℎ

2
[𝑓 (x𝑘 ,𝚯𝑘 ) + 𝑓 (x𝑘+1,𝚯𝑘 )] . (5)

Obviously, this is an implicit method, and it needs to be estimated

by a forecast-correction scheme before each update of x𝑘+1.

3 OUR SCHEMES FOR UNFOLDED LADMMS

In this section, we find that D-LADMM [41] can be interpreted as

the Euler method in numerical DEs. According to this observation,

we propose a new scheme, called Trapezoid LADMM scheme, which

is inspired by the trapezoid method in numerical DEs.

3.1 Euler Scheme for Unfolded LADMM

Prior works established a connection between unfolded algorithms

for solving unconstrained problems and numerical DEs. And ex-

isting DE’s analysis only focuses on traditional ADMMs. In this

part, we take a step toward how to interpret unfolded ADMMs for

solving constrained problems as numerical discretizations of DEs.

We first unfold LADMM into a unified DEs-inspired DNN, called

unfolded Euler LADMM scheme:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x𝑘+1 = F𝑓
(
x𝑘 +

ℎ𝛽𝑘
𝜃𝑘

𝐹𝑘 (x𝑘 )
)
,

y𝑘+1 = G𝑔
(
y𝑘 +

ℎ

𝜂𝑘
𝐺𝑘 (y𝑘 )

)
,

𝝀𝑘+1 = 𝝀𝑘 + ℎ𝛽𝑘 (Ax𝑘+1 + y𝑘+1 − b),

(6)

where 𝐹𝑘 (x)=−W
�(

𝝀𝑘
𝛽𝑘

+Ax+y𝑘−b),𝐺𝑘 (y)=−(
𝝀𝑘
𝛽𝑘

+Ax𝑘+1+y−b),

{W, 𝜃𝑘 , 𝜂𝑘 , ℎ, 𝛽𝑘 } are learnable parameters, and F𝑓 and G𝑔 are non-

linear operators. For example, if F𝑓 and G𝑔 are proximal operators,

(6) degenerates to ELADMM and further D-LADMM [41] with

ℎ ≡ 1; if F𝑓 and G𝑔 are general non-linear operators, e.g., CNNs, (6)

can be used for solving CS problems, and we call it ELADMM-Net in

such case. The clear connection can be seen in Fig. 2. For theoretical

explanation, Lemma 1 offers a new perspective of explaining the

unfolded Euler LADMM scheme.

Lemma 1 (Unfolded Euler LADMM scheme and DEs). Suppose

that 𝑓 and𝑔 are closed convex functions but maybe non-smooth,A has

full column rank, andF𝑓 andG𝑔 are proximal operators. Then, we con-

sider Problem (1) and optimal trajectory function {X(𝑡),Y(𝑡),𝚲(𝑡)}.
The continuous limit associated with the updates in (6) with time

scale 𝑡 = 𝑘ℎ, corresponds to the first-order approximating DEs:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇𝑓𝜇1 (X(𝑡)) + 𝜃 �X(𝑡) − 𝐹 (X(𝑡)) = 0,X(0) = x0,

∇𝑔𝜇2 (Y(𝑡)) + 𝜂 �Y(𝑡) −𝐺 (Y(𝑡)) = 0,Y(0) = y0,

�𝚲(𝑡) − 𝛽 (AX(𝑡) + Y(𝑡) − b) = 0,𝚲(0) = 𝝀0,

(7)
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Figure 3: The 𝑘-th stage of Algorithm 1. Note that 𝐹𝑘 (x) = −W� (
𝝀𝑘
𝛽𝑘

+ Ax + y𝑘 − b) , 𝐺𝑘 (y) = −(
𝝀𝑘
𝛽𝑘

+ Ax𝑘+1 + y − b) , and 𝐻𝑘 (𝝀𝑘 ) = 𝝀𝑘 +

ℎ𝛽𝑘 (Ax𝑘+1 + y𝑘+1 − b) . The orange line represents the independent update of each variable, the blue line represents the interaction between the

variables, and most notably, the green line represents the skip connection, just like the identity mapping of the residual network, ResNet [17].

where 𝜃𝑘 → 𝜃 , 𝜂𝑘 → 𝜂 in the limit ℎ → 0, ∇𝑓𝜇1 (·) and ∇𝑔𝜇2 (·) are

the Moreau-Yosida approximation2 of 𝜕𝑓 (·) and 𝜕𝑔(·) repectively,
𝐹 (X(𝑡)) = −W�(𝚲(𝑡) + 𝛽 (AX(𝑡) + Y(𝑡) − b)), and 𝐺 (Y(𝑡)) =

−(
𝚲(𝑡 )
𝛽 + AX(𝑡) + Y(𝑡) − b).

Lemma 1 indicates that the trajectory of (7) closely resembles the

sequence {x𝑘 , y𝑘 ,𝝀𝑘 } generated by Euler LADMM (6). Specifically,

one can think of the Euler LADMM scheme to solve Problem (1)

as applying the Euler method to solve DEs (7) with the initial con-

ditions x0 = X(0), y0 = Y(0),𝝀0 = 𝚲(0). For example, D-LADMM

can be regarded as solving such DEs with DE-stepsize ℎ ≡ 1, while

our Euler LADMM scheme is capable of choosing ℎ more flexibly.

Question 1 in Section 1 has been answered.

3.2 Our Unfolded Trapezoid LADMM Scheme

We have shown above that some unfolded ADMMs can be inter-

preted as the Euler method in DEs, which broadens our horizons to

design unfolded LADMM networks. To further explore the struc-

tural diversity of unfolded networks and improve the accuracy of

the Euler LADMM scheme, we propose a new scheme, dubbed the

unfolded Trapezoid LADMM scheme, and interpret its connection

with DEs.

3.2.1 Implicit Trapezoid LADMM scheme and DEs. As discussed

above, we can regard the Euler LADMM scheme as the Eulermethod

to solve the first-order DEs. In this subsection, we introduce the

trapezoidmethod into the update of x and y, and propose an implicit

Trapezoid LADMM scheme for Problem (1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x𝑘+1 = F𝑓

(
x𝑘 +

ℎ𝛽𝑘
2𝜃𝑘

(
𝐹𝑘 (x𝑘 )+𝐹𝑘 (x𝑘+1)

) )
,

y𝑘+1 = G𝑔

(
y𝑘 +

ℎ

2𝜂𝑘

(
𝐺𝑘 (y𝑘 )+𝐺𝑘 (y𝑘+1)

) )
,

𝝀𝑘+1 = 𝝀𝑘 + ℎ𝛽𝑘 (Ax𝑘+1 + y𝑘+1 − b).

(8)

2The Moreau-Yosida approximation of a convex function 𝑓 with parameter 𝜇 > 0

is defined as 𝑓𝜇 (𝑥 ) := inf
𝑧

{
𝑓 (𝑧 ) + 1

2𝜇 ‖𝑧 − 𝑥 ‖2
}
. For any 𝜇 > 0, 𝑓𝜇 is a convex,

continuously differentiable function [46].

Similarly, we find that the implicit Trapezoid LADMM scheme (8)

also recasts as the approximating DEs (7) by Lemma 2.

Lemma 2 (Unfolded Implicit Trapezoid LADMM scheme and

DEs). The same notations and assumptions as in Lemma 1 are used.

The continuous limit associated with the implicit Trapezoid LADMM

scheme (8), with time scale 𝑡 = ℎ𝑘 , also corresponds to the first-order
approximating DEs (7).

Lemma 2 shows that the implicit Trapezoid LADMM scheme (8)

for Problem (1) solves the same first-order approximating DEs (7).

And from Theorems 15.1 - 15.5 in [1], we know that the existence

and uniqueness of solutions of DEs (7) can be ensured under the

condition of Lipschitz continuity. Therefore, we can further fairly

compare the precision of our two schemes.

3.2.2 Advantages of Trapezoid LADMM scheme over Euler LADMM

scheme. Theorem 1 explains that the Trapezoid LADMM scheme

is more accurate than the Euler LADMM scheme under certain

circumstances.

Theorem 1. Suppose that 1) 𝑓 and𝑔 are 𝐿𝑓 -smooth and 𝐿𝑔-smooth

respectively; 2) F𝑓 and G𝑔 are non-expansive mappings. Then the

local and global error bound of the implicit Trapezoid LADMM scheme

(8) are O(ℎ3) and O(ℎ2), while the local and global error bound of
the Euler LADMM scheme (6) are O(ℎ2) and O(ℎ), respectively.

Theorem 1 shows that the lower error bound of the Trapezoid

LADMM scheme can be obtained under the mild assumptions. In

fact, Theorem 1 almost holds when 𝑓 and 𝑔 are special non-smooth

functions, such as ℓ1-norm, which will be analyzed in the Appendix.

Moreover, we can know that each updated point of the Trapezoid

LADMM scheme will be closer to the optimal trajectory, thus reduc-

ing the deviation from the optimal trajectory. Therefore, it can be

understood to improve the convergence speed to a certain extent.

3.2.3 A Practical Scheme: Explicit Trapezoid LADMM. The implicit

scheme (8) requires a solution to solve the equations w.r.t. x and

y, respectively, which are computationally intractable. To solve

this problem, we propose an explicit Trapezoid LADMM scheme
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Algorithm 1 Our Explicit Trapezoid LADMM Scheme

Input: A, hyper-parameter 𝛼 , the layer number 𝐾 , the training
dataset D = {(b𝑖 , x𝑖 )}𝑁𝑖=1.

Initialize: x0, y0, 𝝀0, learnable parameters 𝚯 = {W, ℎ, 𝜃𝑘 ,

𝜂𝑘 , 𝛽𝑘 }
𝐾
𝑘=1, note that 𝑎𝑘 = 𝜃𝑘

ℎ , 𝑐𝑘 = 𝜂𝑘
ℎ .

Inference:

1: Choose mini-batch observations b of size 𝑁𝑏 fromD, 𝑁𝑝 is the

size of each x, and 𝐾 is the number of layers;

2: for 𝑘 = 0, 1, . . . , 𝐾 − 1 do

3: x̂𝑘+1=F𝑓
(
x𝑘 +

𝛽𝑘
𝑎𝑘

𝐹𝑘 (x𝑘 )
)
; //forecast step

4: x𝑘+1=F𝑓
(
x𝑘 +

𝛽𝑘
2𝑎𝑘

[𝐹𝑘 (x𝑘 ) + 𝐹𝑘 (x̂𝑘+1)]
)
; //correction step

5: ŷ𝑘+1=G𝑔
(
y𝑘 + 1

𝑐𝑘
𝐺𝑘 (y𝑘 )

)
; //forecast step

6: y𝑘+1=G𝑔
(
y𝑘 + 1

2𝑐𝑘
[𝐺𝑘 (y𝑘 ) +𝐺𝑘 (ŷ𝑘+1)]

)
; //correction step

7: 𝝀𝑘+1=𝝀𝑘 + ℎ𝛽𝑘
(
Ax𝑘+1 + y𝑘+1 − b

)
;

8: end for

Training:

9: if the ground truth x∗ of observation b exists then

10: 𝐿𝑜𝑠𝑠1 = min𝚯
1

𝑁𝑏𝑁𝑝

∑𝐾
𝑘=1

𝑘∑
𝑘

(
‖x𝑘 − x∗‖2 + ‖y𝑘 − y∗‖2

)
;

11: else

12: 𝐿𝑜𝑠𝑠2 = min𝚯
1

𝑁𝑏𝑁𝑝

∑𝐾
𝑘=1

𝑘∑
𝑘

(
𝑓 (x𝑘 ) + 𝑔(b − Ax𝑘 )

)
;

13: end if

Output: M(D;𝚯) = x𝐾 .

as shown in Algorithm 1. Specifically, we design the forecast step

w.r.t x̂, and then use 𝐹𝑘 (x̂𝑘+1) in step 4 of Algorithm 1 instead of

𝐹𝑘 (x𝑘+1) in (8) as well as y. Similarly, F𝑓 and G𝑔 are non-linear

operators and vary in different applications. For example, 1) for ℓ1-
norm, if F𝑓 andG𝑔 are proximal operators, Algorithm 1 degenerates

to TLADMM, and if F𝑓 and G𝑔 are general non-linear operators,

e.g., CNNs, Algorithm 1 can be used for CS problems, and we call it

TLADMM-Net in such case; 2) for ℓ2-norm, the non-linear operator

degenerates into an identity one or matrix inversion. Compared

with the Euler LADMM scheme, although there are two more aux-

iliary variables x̂ and ŷ, the experimental performance is much

better at the cost of increasing the limited time. Here we keep each

learnable variable for the convenience of our proofs. It is worth

noting that the learnable parameters {ℎ, 𝜃𝑘 , 𝜂𝑘 , 𝛽𝑘 } are all scalars
rather than vector or matrix, which reduces parameter redundancy

to adapt to small-scale datasets. We design the training loss function

as the weighted multi-layer loss, which alleviates the vanishing

gradient problem for deep networks. When there does not exist

ground truth, we utilize its model objective as a loss function.

Fig. 3 shows the 𝑘-th block architecture of the explicit Trapezoid

LADMM scheme, which can be viewed as the𝑘-th stage of inference.
Compared with the methods plugging in a pre-trained DNN as

denoiser [16], our networks are end-to-end trained, without relying

on any pre-trained network. It is worth noting that F𝑓 and G𝑔
are simulated by simple CNNs in Fig. 3 for generality. Due to the

introduction of the trapezoid method, each parameter update is first

a forward trial procedure, followed by a further correction, so we

can know that a well-trained Trapezoid LADMM schemeM(D;𝚯)
can be seen as a traditional iterative with better parameters for the

distribution of the training data.

4 CONVERGENCE ANALYSIS

The errors of our schemes have been analyzed from the perspective

of DEs. This section provides the convergence analysis of our ex-

plicit Trapezoid LADMM scheme from the perspective of unfolded

algorithms. We will focus on the cases where F𝑓 and G𝑔 are the

proximal operators about the 𝑓 and 𝑔, respectively. We sketch the

main proofs as follows.

Proof sketch:Wefirst analyze that our explicit Trapezoid LADM-

M scheme converges to the implicit Trapezoid LADMM scheme.

Then, we refer to D-LADMM and prove the convergence of our im-

plicit Trapezoid LADMM scheme by Theorem 2. Finally, the linear

convergence rate of our schemes can be also obtained.

Assumption 1. Suppose that ℎ
2𝜃𝑘

𝐿𝑥 < 1, ℎ
2𝜂𝑘

𝐿𝑦 < 1, where 𝐿𝑥
and 𝐿𝑦 are the maximal Lipschitz constants of the sequences {𝐹𝑘 (·)}
and {𝐺𝑘 (·)} with respect to x and y, respectively, and F𝑓 and G𝑔 are

non-expansive.

Firstly, in (8), x𝑘+1 and y𝑘+1 can be regarded as fixed points, and

we can adopt the iterative technique. We set:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
(𝑖+1)
𝑘+1

= F𝑓

(
x𝑘 +

ℎ𝛽𝑘
2𝜃𝑘

(
𝐹𝑘 (x𝑘 )+𝐹𝑘 (x

(𝑖 )
𝑘+1

)
) )
,

y
(𝑖+1)
𝑘+1

= G𝑔

(
y𝑘 +

ℎ

2𝜂𝑘

(
𝐺𝑘 (y𝑘 )+𝐺𝑘 (y

(𝑖 )
𝑘+1

)
) )
,

𝝀𝑘+1 = 𝝀𝑘 + ℎ𝛽𝑘 (Ax𝑘+1 + y𝑘+1 − b),

(9)

where x
(0)
𝑘+1

is an initial estimation. If Assumption 1 holds, (9) con-

verges to (8) for 𝑖 large enough. For ease of illustration, we set 𝑖 = 0

and introduce the x- and y-step of the Euler LADMM scheme to

estimate x0
𝑘+1

and y0
𝑘+1

in Algorithm 1. Secondly, we give the proof

of Theorem 2 in the Appendix with reference to D-LADMM [41].

Theorem 2 (Convergence of implicit Trapezoid LADMM

scheme). Let the sequence {𝝎𝑘 = (x𝑘 , y𝑘 ,−𝝀𝑘 )
�} be generated by

the implicit Trapezoid LADMM scheme (8), then there exists𝚯 ∈ S(𝜖)
such that {𝝎𝑘 } converges to a solution 𝝎∗ of Problem (1).

Theorem 2 plays a key role in further proving a linear conver-

gence rate of Algorithm 1. Theorem 2 shows the proposed implicit

Trapezoid LADMM scheme can asymptotically converge to the

solution of Problem (1). And if ℎ is small enough to satisfy Assump-

tion 1, then the explicit Trapezoid LADMM scheme also converges

to the same solution. Finally, following D-LADMM [41] and Theo-

rem 2 in this paper, we still gain the linear convergence rate of the

proposed algorithms. In particular, the proposed Algorithm 1 can

achieve a faster convergence speed than D-LADMM in practice,

which can be verified by the results in the next section.

5 EXPERIMENTS

In this section, we perform variousmultimedia applications to verify

the effectiveness of our methods. We first test F𝑓 and G𝑔 as simple

non-linear operators, i.e., soft-thresholding operator, in Subsections

5.1-5.3, and we call our scheme (6) and Algorithm 1 as ELADMM

and TLADMM, respectively. Then we use CNN to simulate general

F𝑓 and G𝑔 to solve the CS problems in Subsections 5.4-5.6, and

we call them ELADMM-Net and TLADMM-Net, respectively. We

initialize 𝛽𝑘 and ℎ as small values to find the next point on a larger

scale and meet Assumption 1, respectively. For fair comparison, the
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Table 1: Comparison of the denoising results in terms of PSNR (dB) with salt-and-pepper noise rate 10%. The best and second

best results are highlighted in red and blue colors, respectively.

Algorithms Barb Boat Bridge Couple Finger Goldhill Lena Man Mandrill Peppers Washsat Zelda Ave. Time (s)

D-LADMM (𝐾 =15, [41]) 32.12 31.16 26.36 31.63 31.44 32.53 35.23 31.06 24.75 34.66 34.82 37.82 31.97 0.2756

D-LADMM (𝐾 =30, [41]) 30.55 30.23 25.67 30.78 30.11 31.46 34.50 30.12 23.24 32.12 34.13 35.62 30.71 0.5685

ELADMM (𝐾 =15, Ours) 32.07 31.38 26.45 31.49 31.68 32.37 35.67 30.88 23.96 34.20 34.32 37.92 31.87 0.2748

TLADMM (𝐾 =8, Ours) 33.36 33.29 27.94 32.98 33.65 34.39 37.75 32.94 24.58 34.13 36.43 39.30 33.39 0.2701

TLADMM (𝐾 =15, Ours) 34.46 33.40 28.26 33.65 34.30 34.58 39.33 33.24 25.07 34.92 37.06 40.27 34.04 0.5031

number of network layers is set to match the compared algorithms

rather than a default value.

5.1 Synthetic Data

We first evaluate the effectiveness of our methods on a small-scale

synthetic dataset similar to [41]. We consider the following con-

strained model:

min
x,y

𝛼 ‖x‖1 + ‖y‖1 , s.t. Ax + y = b, (10)

where b ∈ R𝑚 is an observation, x is what to recover, y denotes

the noise to be removed and 𝛼 is a hyper-parameter that balances

the recovery result and denoising performance. In this experiment,

we set𝑚=250, 𝑑 =500 and apply the Bernoulli sampling operator

(with probability 𝑝 =0.08 and 0.1) on both x and y.

-

-

-

-

-

-

Figure 4: Comparison of the NMSE performance on synthetic

datasets. Left: 𝑝 = 0.08; Right: 𝑝 = 0.1.

For Problem (10), our F𝑓 and G𝑔 both degenerate into the soft-

thresholding operator, and we adopt the stochastic gradient de-

scend (SGD) algorithm to train D-LADMM [41], our ELADMM,

and our TLADMM. We choose Normalized Mean Square Error

(NMSE) to measure the performance of all methods. From Fig. 4, we

observe that in the case of linear convergence rate, ELADMM per-

forms slightly better than D-LADMM due to ELADMM choosing ℎ
more flexibly. And TLADMM performs significantly better than D-

LADMM and ELADMM, which verifies the conclusion in Theorem

1. Note that ISTA-based networks can not solve this problem.

5.2 Natural Image Denoising

We further utilize natural images to evaluate the denoising per-

formance and verify the stability of our TLADMM on small-scale

datasets. The training and testing datasets are the same as in [41]

and the denoising performance is evaluated with Peak Signal-to-

Noise Ratio (PSNR). For dictionary A in (10), the patch-dictionary

method [42] is used to initialize it. We consider the situation where

the ground truth is unknown and thus train our methods by using

the following model loss function:

𝐿𝑜𝑠𝑠2 = min
𝚯

1

𝑁𝑏𝑁𝑝

𝐾∑
𝑘=1

𝑘∑
𝑘

(
𝛼 ‖x𝑘 ‖1 + ‖Ax𝑘 − b‖1

)
. (11)

Table 1 shows that our TLADMM with 𝐾 =15 can improve the

denoising performance by about 2.1/2.2 dB on average compared

with D-LADMM/ELADMM, respectively. The underlying reason is

that TLADMM is more accurate, and the points closer to the optimal

trajectory of x- and y- subproblem can be obtained in one iteration,

while D-LADMM or ELADMM only corresponds to applying the

Euler method with lower precision. Moreover, taking the model loss

as the training loss function imposes strict constraints on the solu-

tion, which can be seen as an alternative to the absence of ground

truth. From Algorithm 1 and Table 1, although our TLADMM has

two auxiliary steps, it performs better at almost the same time cost.

Thus, our TLADMM can improve the denoising performance under

fewer network layers or parameters. In short, these all verify that a

more accurate method for solving the first-order DEs can guide the

design of better unfolded LADMM networks.

5.3 Natural Image Inpainting

We also perform our ELADMM and TLADMM on image inpainting

compared with ISTA-based networks and D-LADMM [41], which

will show advantages over ISTA-based networks, and indicate that

the introduction of the trapezoid method can improve the perfor-

mance of unfolded networks in different applications.

We assume that the image is corrupted by a known mask M

with a ratio of 𝑟% missing pixels, and the inpainting problem can

be formulated as follows:

min
x,y

𝛼 ‖x‖1 +
1

2
‖y‖22, s.t. MDx + y = b, (12)

where b is a corrupted image block, A = MD, the dictionary D is

obtained from training clean images, and 𝛼 is a hyper-parameter

that balances the recovery result and sparsity. Note that F𝑓 and G𝑔
degenerate into a soft-thresholding operator and a constant trans-

formation
𝛽𝑘

1+𝛽𝑘
I(·), respectively. The learned solverM(D;𝚯) has

a natural advantage - avoiding O(𝑑3) computational complexity

due to matrix-matrix multiplications and matrix inversions in ex-

isting ADMM-based unfolded networks.

We set the number of the layers 𝐾 =20 in all the networks, and

the PSNR results are listed in Table 2. We observe that ELADMM
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Table 2: Comparison of image inpainting results in terms of PSNR (dB) on the dataset Set11 with 50%missing pixels.

Algorithms Barb Boat House Lena Peppers C.man Flinstones Finger Parrot Foreman Monarch Ave. (dB)

LFISTA (ICLR2017, [29]) 26.13 30.02 32.55 32.65 28.84 27.24 26.53 28.35 31.03 30.65 28.17 29.29

GLISTA (ICLR2019, [40]) 25.52 28.76 31.04 31.18 27.64 25.85 24.32 26.35 29.44 29.24 26.07 27.76

D-LADMM (ICML2019, [41]) 26.51 30.91 34.11 34.31 29.84 27.44 27.04 29.95 32.44 31.84 28.82 30.29

ELISTA (AAAI2021, [24]) 26.75 30.55 32.84 32.94 29.64 27.68 24.40 28.52 30.95 30.85 26.45 29.23

ELADMM (Ours) 26.54 30.84 34.15 34.55 29.75 27.48 27.11 29.85 32.62 31.95 28.99 30.35

TLADMM (Ours) 27.08 31.58 34.75 35.08 30.09 27.94 27.69 30.38 33.61 32.45 29.45 30.91

GT 8.0 25.85 27.24 27.68 27.44 27.48 27.94

GT 10.2 29.44 31.03 30.95 32.44 32.62 33.61

Figure 5: Comparison of visual results and PSNR (dB) for the image

inpainting with 50% missing pixels. From left to right: ground truth

(GT), corrupted image, and the results of GLISTA [40], LFISTA [29],

ELISTA [24], D-LADMM [41], ELADMM (Ours) and TLADMM (Ours).

and TLADMM consistently outperform the ISTA-based networks,

LFISTA, GLISTA, and ELISTA. In addition, it is clear that the av-

erage PSNR of our TLADMM is about 0.6 dB higher than that of

D-LADMM. Finally, Fig. 5 shows the visual performance of different

methods on Cameraman (called C.man) and Parrot. It can be seen

that our TLADMM can restore the highest image quality.

5.4 Natural Image Compressive Sensing

Our methods can also be easily extended to solve the CS inverse

problem. Here we will show the advantages of our methods when

F𝑓 and G𝑔 are more general non-linear operators. By introducing

an auxiliary variable y, the CS model can be expressed as follows:

min
x,y

1

2
‖c − 𝚽x‖2 + 𝛼 ‖𝚿y‖1, s.t. x = y, (13)

where 𝚽 ∈ R𝑛×𝑑 is an under-sampling matrix, x is vectorized

image, the CS measurement of x is denoted by c, b = 0, A = I,

and 𝚿 denotes a transformation matrix for a filtering operation,

e.g., Discrete Cosine Transform and Discrete Wavelet Transform.

Formally, we replace 𝚿 with a non-linear transformation T (·) to

sparsify natural images, where T (·) adopts a simple CNN as in

[47]. And the non-linear operator F𝑓 (z) degenerates into Q𝑘 (z+ c),

where Q𝑘 = (𝚽�𝚽 + 𝛽𝑘 I)
−1, and G𝑔 (·) = T̃

(
𝑆𝑇 (T (·))

)
, where

𝑆𝑇 (·) denotes the soft-thresholding operator. In fact, we also avoid

matrix inversions in existing ADMM-based unfolded networks by

linearizing quadratic terms, so the computational complexity of our

methods can be further reduced.

For fair comparison, we select the same Train400 dataset as in

[44] containing large numbers of various scenarios to train our un-

folded networks. We used the Adam optimizer and all the methods

were trained up to 400 epochs. As for testing, we utilize two widely-

used datasets: Set11 and BSD68, and reconstructed performance

is evaluated by computing PSNR. We refer to the partial results in

[44] for some compared algorithms.

As shown in Table 3, our TLADMM-Net with 𝐾 =10 achieves at
least 0.92/0.72 dB PSNR improvement over other algorithms on the

BSD68/Set11 datasets on average, which fully verifies the effective-

ness of our Trapezoid scheme and reduction of the number of layers.

If we set 𝐾 =20 to train our TLADMM-Net, recovery performance

will be further improved. Compared with several recently proposed

networks, the reconstruction time of our schemes is competitive,

and the number of network parameters is reduced. Fig.1 shows the

details of all the algorithms for PSNR, reconstruction time, and the

number of network parameters on BSD68 at CS ratio 𝛾 = 30%.

5.5 Speech Data Compressive Sensing

Moreover, we also consider other multimedia applications, speech

CS, whose model is the same as (13), but x represents vectorized

speech. We train our methods on two speech datasets, SpeechCom-

mands and TIMIT, and we take 70% of the datasets for training and

30% for testing.We perform the same preprocessing as ADMM-DAD

[20] on the raw speech data and execute the codes of ISTA-Net+ [47]

and ADMM-DAD as baselines.

Figure 6: Comparison of the visual results for the speech CS task

at 𝛾 = 40% on TIMIT. Upper left, upper right, lower left and lower

right: the spectrograms of ground truth, and the results of ADMM-

DAD [20], ELADMM-Net (Ours) and TLADMM-Net (Ours).
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Table 3: Comparison of performance for image compressive sensing in terms of PSNR (dB) under different CS ratios 𝛾 = 10%, 20%, 30%, 40%, 50%
on the BSD68 and Set11 datasets. As we can see, our networks achieve the best results under all CS ratios.

Algorithms
Dataset: BSD68 Dataset: Set11

10% 20% 30% 40% 50% Avg. 10% 20% 30% 40% 50% Avg.

ISTA-Net+ (CVPR2018, [47]) 25.24 28.00 30.20 32.10 33.93 29.89 26.57 30.85 33.74 36.05 38.05 33.05

DPDNN (TPAMI2019, [8]) 24.81 27.28 29.22 30.99 32.74 29.01 26.09 29.75 32.37 34.69 36.83 31.95

GDN (TCI2019, [13]) 25.19 27.95 29.88 32.07 34.09 29.84 26.03 30.16 32.95 35.25 37.60 32.40

CSCNet (CVPR2019, [34]) 27.28 29.01 31.87 33.86 35.77 31.56 28.48 31.95 34.62 36.92 39.01 34.20

DPA-Net (TIP2020, [37]) 25.33 - 29.58 - - - 27.66 - 33.60 - - -

MAC-Net (ECCV2020, [5]) 25.70 28.23 30.10 31.89 33.37 29.86 27.92 31.54 33.87 36.18 37.76 33.45

COAST (TIP2021, [45]) 26.28 29.00 32.10 32.93 34.74 31.01 28.69 32.54 35.04 37.13 38.94 34.47

ISTA-Net++ (ICME2021, [44]) 26.25 29.00 31.10 33.00 34.85 30.84 28.34 32.33 34.86 36.94 38.73 34.24

GPX-ADMM-Net (2021, [19]) 25.30 27.79 29.32 31.99 33.25 29.53 27.46 31.36 33.85 36.28 38.32 33.45

ELADMM-Net (𝐾 =20, Ours) 27.01 29.53 32.01 33.89 35.82 31.65 28.34 32.51 34.72 37.32 38.71 34.32

TLADMM-Net (𝐾 =10, Ours) 27.76 30.38 32.68 34.78 36.82 32.48 28.95 32.81 35.73 38.18 40.32 35.19

TLADMM-Net (𝐾 =20, Ours) 27.97 30.59 32.96 35.05 37.15 32.74 29.21 33.20 36.06 38.58 40.83 35.57

We choose a column orthogonal measurement matrix𝚽 to down-

sample raw speech data. We use the Adam optimizer and train

100 epochs for all the methods with 𝐾 = 10. We set 𝐿𝑜𝑠𝑠1 as the
loss function, and use MSE = 1

𝑞

∑𝑞
𝑖=1 ‖M(b𝑖 ;𝚯) − x𝑖 ‖2 as a test

criterion, where 𝑞 is the number of test samples. The recovered

performance is shown in Table 4. It can be seen that the MSE of

our ELADMM-Net and TLADMM-Net is always lower than the

baselines. Furthermore, we extract the spectrograms of an example

test raw audio file in TIMIT as shown in Fig. 6. It can be clearly

seen that our ELADMM-Net and TLADMM-Net distinguish more

frequencies than ADMM-DAD, and TLADMM-Net further removes

the noise of ELADMM-Net.

Table 4: Comparison of the test MSE results under the CS ratios

𝛾 = 25%, 40% on the speech datasets.

Algorithms
SpeechCommands TIMIT

25% 40% 25% 40%

ISTA-Net+ [47] 0.58×10−2 0.46×10−2 0.22×10−3 0.20×10−3

ADMM-DAD [20] 0.25×10−2 0.13×10−2 0.79×10−4 0.42×10−4

ELADMM-Net (Ours) 0.17×10−2 0.78×10−3 0.68×10−4 0.40×10−4

TLADMM-Net (Ours) 0.16×10−2 0.80×10−3 0.51×10−4 0.22×10−4

5.6 MRI Compressive Sensing

To demonstrate the generalization ability of our schemes, we also

extend our schemes to the MRI reconstruction. Following previ-

ous practices, we set 𝚽= PF for Problem (13), where P is a mask

and F is the discrete Fourier transform. The sampling pattern is

the commonly used pseudo radial sampling. We train and test our

networks on the same brain MRI dataset as ADMM-Net [36] and

ISTA-Net+ [47]. Our networks are separately trained for each sam-

pling ratio with 𝐾 =10 and the reconstruction results are shown in

Table 5. It can be seen that our networks outperform ADMM-Net

in terms of both PSNR and runtime, and our TLADMM-Net out-

performs our ELADMM-Net in the case of increased limited time

cost. Note that our networks are comparable to the reconstruction

result of ISTA-Net+, but the runtime is increased, which is mainly

due to the complexity of ADMM itself. Compared with ADMM-Net,

the reconstruction time of TLADMM-Net is reduced by two-thirds

because ADMM-Net requires matrix inversions.

Table 5: Comparison of test PSNR (dB) and runtime (s) for MRI CS

with CS ratios 𝛾 = 20%, 30%, 40%, 50% on the brain dataset. The last

column is average GPU time for reconstructing a 256 × 256 image.

Algorithms 20% 30% 40% 50% Time

ADMM-Net [36] 37.17 39.84 41.56 43.00 0.046

ISTA-Net [47] 38.30 40.52 42.12 43.60 0.006

ISTA-Net+ [47] 38.73 40.89 42.52 44.09 0.007

ELADMM-Net (Ours) 38.31 40.21 42.12 43.66 0.007

TLADMM-Net (Ours) 38.72 40.81 42.57 44.15 0.013

6 CONCLUSIONS AND FUTUREWORK

In this paper, a novel scheme of designing unfolded LADMM net-

works was proposed. The connection between existing unfolded

algorithms and DEs was firstly analyzed, and then the trapezoid

method was introduced into unfolded LADMMs to obtain a novel

Trapezoid LADMM scheme. Furthermore, we analyzed the error

bound and convergence of the proposed Trapezoid LADMM scheme.

Extensive experimental results verified the Trapezoid LADMM

scheme superior to the existing methods, which provides strong

support for “higher precision numerical methods can derive better

unfolded ADMMs".We anticipate that these results will provide new

insights on understanding unfolded ADMM networks for solving

machine learning problems. In the future, we will further explore

the connections between other higher-order numerical methods

(e.g., the multi-step method) and unfolded ADMMs.
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